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The task of determining the orientations of crystals is usually performed by

indexing reflections detected on diffraction patterns. The well known underlying

principle of indexing methods is universal: they are based on matching

experimental scattering vectors to some vectors of the reciprocal lattice. Despite

this, the standard attitude has been to devise algorithms applicable to patterns of

a particular type. This paper provides a broader perspective. A general approach

to indexing of diffraction patterns of various types is presented. References are

made to formally similar problems in other research fields, e.g. in computational

geometry, computer science, computer vision or star identification. Besides a

general description of available methods, concrete algorithms are presented in

detail and their applicability to patterns of various types is demonstrated; a

program based on these algorithms is shown to index Kikuchi patterns, Kossel

patterns and Laue patterns, among others.

1. Introduction

Indexing of diffraction patterns is a process of ascribing Miller

indices to diffraction reflections. In general, indexing is

performed without knowledge of the crystal structure [see e.g.

Kabsch (1988), Duisenberg (1992) and Morawiec (2017)].

Here, we consider end-indexing, i.e. indexing of patterns

originating from known structures. In particular, it is assumed

that the unit-cell parameters are known, and that one knows

which reflections are forbidden and which can show up in the

pattern. End-indexing is used mainly for the determination of

crystal orientations. Knowing the locations of reflections and

their Miller indices, one can easily get the orientation.

A large number of papers on indexing have been published,

but they are fragmentary, with a focus on particular types of

patterns. They usually describe indexing procedures together

with those for automatic detection of reflections. In effect,

solutions to the same formal problem are dispersed over

many loosely related publications. This paper gives a more

panoramic view of indexing-based orientation determination.

It reviews the most effective methods of crystal orientation

determination, but without focusing on diffraction patterns of

a specific type. The point is to concentrate attention on the

essence of the orientation determination problem without

distraction by peripheral issues of pattern processing. More-

over, techniques used in other research areas to solve related

problems are briefly described. The point is to indicate fields

from which ideas for creating more efficient indexing algo-

rithms can be adapted.

The general approach to orientation determination opens

the opportunity to create algorithms applicable to patterns of

various types. If a program code specialized to a certain type is

needed, one may write it by starting from the general frame-
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work and being aware of the variety of existing algorithmic

solutions. This approach also helps to avoid unnecessary

repetitions; in the past, the same methods have been inde-

pendently invented by researchers working in different fields

or using different diffraction methods. For instance, indexing

based on triplets of reciprocal-lattice vectors was used for

solving Laue patterns (Ohba et al., 1981). Then it was invented

again as ‘triplet indexing’ of electron backscatter diffraction

(EBSD) patterns (Wright & Adams, 1992; Adams et al., 1993).

In the meantime, voting by matching triangles was indepen-

dently introduced for star identification (Groth, 1986). Simi-

larly, indexing methods based on accumulation along curves in

the space of rotations were described by Beyerlein et al. (2017)

for monochromatic serial crystallography data and by

Gevorkov et al. (2020) for polychromatic patterns, but the

authors were unaware of a similar approach proposed much

earlier for indexing K-line patterns (Morawiec & Bieda, 2005).

Besides the general description of pattern-type indepen-

dent indexing methods, the paper contains example indexing

algorithms. An implementation of these algorithms is shown

to index Kikuchi patterns, Kossel patterns or Laue patterns,

and it is shown to be quite efficient when applied to EBSD

patterns. To our knowledge, solving such a broad spectrum of

patterns with the same code has not been attempted before,

but there is still room for creating more universal indexing

programs. It is believed that further progress can be facilitated

by combining the methods of computational geometry,

computer science and other research fields. Thus, the paper is

addressed primarily to crystallographers writing indexing

software, and it may also be of interest to users of automatic

systems for orientation determination who look for better

understanding of the indexing engines installed in those

systems.

The issue of crystal orientation determination arises in

many fields, e.g. in conventional electron microscopic analysis

of individual crystallites or crystal interfaces and in

diffractometric measurements, but its principal application is

orientation mapping. Most orientation mappings rely on

explicit indexing. An indexing engine is at the heart of an

orientation determination system. The technique of orienta-

tion mapping is widely applied in studies of the microstructure

and texture of polycrystalline materials. Automatic systems

collect diffraction patterns originating from small areas of a

specimen, determine local orientations, and provide digital

maps with orientation parameters ascribed to individual pixels

or grains. The automatically generated orientation maps

complement conventional contrast images with quantitative

data; besides showing the topography of the crystallites, the

maps also contain information on grain orientation. Contem-

porary orientation mapping methods originated from techni-

ques relying on Kossel patterns (Inokuti et al., 1980, 1985,

1987). Nowadays, most orientation maps are created based

on step-by-step scans on computer-controlled instruments

equipped with digital cameras. At each step, a diffraction

pattern is acquired and an orientation is determined. Parti-

cularly successful are systems using scanning electron micro-

scopy (SEM) and EBSD patterns (Adams et al., 1993).

Although less often, orientation maps are also created using

other types of patterns. Similar to EBSD is the technique

relying on transmission Kikuchi diffraction in SEM (Keller &

Geiss, 2012; Fundenberger et al., 2016). Orientation maps are

acquired by conventional transmission electron microscopy

(TEM) using Kikuchi patterns and spot patterns (Funden-

berger et al., 2003; Rauch et al., 2008; Morawiec et al., 2014).

TEM-based maps were obtained by so-called ‘conical dark-

field scanning’, with the orientation at a given point deter-

mined from images corresponding to various incident-beam

directions (Wright & Dingley, 1998); with this approach, step-

by-step beam scanning is avoided. Orientation maps were also

acquired by high-energy X-ray diffraction (Poulsen, 2004).

The aforementioned mapping methods are based on mono-

chromatic radiation, but polychromatic X-rays have also been

used [see e.g. Miyamoto et al. (2011) and Whitley et al. (2015)

(laboratory X-ray setups), and Tamura et al. (2003) and Ice &

Pang (2009) (synchrotron setups)]. Besides 2D maps, diffrac-

tion-based determination of local orientations is also used for

reconstruction of 3D microstructures by resolving diffraction

patterns generated by a synchrotron beam transmitted

through a multi-grain specimen (e.g. Poulsen, 2004), but

methods of multi-grain indexing, i.e. solving patterns with

reflections from multiple differently oriented grains, are not

considered here.

Clearly, computer programs for orientation determination

are expected to be general so that they can be applied to

arbitrary crystal structures. The other important aspects are

orientation resolution and accuracy. However, the two critical

features which determine the quality of programs for auto-

matic orientation determination are robustness and speed.

Indexing of diffraction patterns from polycrystalline materials

can be challenging, especially in the case of a small grain size

or a large density of defects, as the quality of the patterns may

be poor. Moreover, with thousands or millions of patterns

used for creating a pixelized orientation map, what matters is

the time efficiency of the pattern processing. For speed,

patterns are collected to be of a quality sufficient for indexing,

and the pattern-solving software is expected to be capable of

dealing with coarse patterns. Generally, the software must be

able to handle poorly localized and spurious reflections.

Orientation determination algorithms are only as good as

their ability to cope with imperfections in the input data.

The paper is organized as follows. It begins with basic

concepts of crystal orientation determination via assignment

of reciprocal-lattice vectors to experimental scattering vectors

(i.e. via end-indexing) and with a reminder of ways to get the

coordinates of these vectors. Formal aspects of the indexing

problem are then summarized, and some conceptually similar

problems considered in computer science and in computa-

tional geometry are listed. Subsequent sections review prac-

tical methods of solving the indexing problem. The most

effective methods rely on the accumulation of contributions

either in a discrete space (Section 5) or in the space of

orientations (Section 6). The described schemes are illustrated

by example indexing algorithms. The algorithms are formu-

lated without reference to particular types of diffraction data.
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An implementation of these algorithms is shown to index

patterns of various types. Before the closing remarks, there are

brief sections on the testing of indexing algorithms and on the

figures of merit used in end-indexing.

One needs to note that crystal orientation can also be

determined without identification of individual reflections, by

matching an experimental pattern as a whole to simulated

patterns (Rauch et al., 2008; Gupta & Agnew, 2009; Chen et al.,

2015). These methods of direct matching differ considerably

from those involving indexing. They are briefly described in

Appendix A.

2. Reflection-identifying vectors

Orientation determination systems based on explicit pattern

indexing perform detection and identification of individual

reflections. Methods for detecting reflection positions depend

on the type of pattern. Clearly, the locations of diffraction

spots are determined using peak-detection techniques. To get

the parameters of bands or lines in EBSD or Kikuchi patterns,

various variants of the Hough transform are applied. The

positions of detected reflections are used to get the coordi-

nates of the corresponding scattering vectors. To get the Miller

indices of reflections, these scattering vectors are matched

with reciprocal-lattice vectors calculated from crystallographic

data. Ultimately, indexing algorithms rely on two lists: a list of

scattering vectors and a list of reciprocal-lattice vectors.

Before going on to a more detailed description of these lists,

one needs to note the issue of vector discrimination. If two

vectors on one of the lists are closer than a permissible

uncertainty in vector determination, they could be matched

with the same vector on the other list. This complication can

be avoided by eliminating such close vectors at the outset

when constructing the lists.

2.1. List of scattering vectors

The scattering vector g corresponding to a diffraction spot

can be calculated by simple application of the Laue equation g

= k � k0 , where k0 and k are the wavevectors of the incident

beam and the reflected beam, respectively. If the magnitudes

of the wavevectors are not accessible (as in the case of spots in

Laue patterns), the direction ĝg of the scattering vector can be

obtained from the location of a spot by normalizing the

difference k̂k� k̂k0 (/ ĝg). Here and below, symbols with a

circumflex ^denote normalized vectors.

For K-line patterns,1 the primary issue is getting scattering

vectors from individual K lines. The relevant procedure was

described by Morawiec (1999), but it works only for suffi-

ciently curved conics, e.g. for Kossel lines. With electron

diffraction, due to the shortness of the wavelength �, K lines

are usually seen as straight lines and the expression given by

Morawiec (1999) is not applicable, but getting the scattering

vector from the line positions is simple. Take a Kikuchi pattern

with pairs of deficit and excess (dark and bright) lines. If L

denotes the vector from the radiation source to the pattern

center, and l is the vector perpendicular to the Kikuchi line

from the pattern center to the line, then k = (L + l)/(� |L + l|) is

a wavevector to the point on the Kikuchi line nearest to the

pattern center (Fig. 1). Having two such wavevectors k1 and k2

for the bright and dark lines of one pair, respectively, one can

calculate the scattering vector g = k1 � k2. In EBSD patterns,

the locations of lines approximating whole bands are usually

determined. In such cases, only directions ĝg of the scattering

vectors can be obtained. For a given band, ĝg is the normal to

the plane through the line approximating the band and the

source of radiation.

2.2. List of reciprocal-lattice vectors

Knowing the crystal structure, one can easily get the

reciprocal-lattice vectors. Because of crystal symmetry there

are families of symmetrically equivalent reflecting planes. To

get all symmetrically equivalent members of the family, one

needs to apply the symmetry operators of the crystal’s Laue

group to a given reciprocal-lattice vector. The primary

criterion for including a family of reciprocal-lattice vectors is

the set of expected reflection intensities obtained from the

structure factors.2 In practice, it makes sense to support this

criterion by visual inspection of indexing results, to find out

which reflections are actually detectable and which are not.

Clearly, if only the directions of the vectors are to be matched,

there is no distinction between families corresponding to

parallel lattice planes, i.e. between families {nh nk nl} differing

by n.

In order to match the scattering vectors to reciprocal-lattice

vectors, one needs to express the latter in a Cartesian coor-

dinate frame ei ascribed to the crystal lattice. With a

reciprocal-lattice vector h specified by Miller indices (hkl) =

(h1h2h3), the ith Cartesian coordinate of h is
P

j hj a
j � ei ,
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Figure 1
The construction used for calculating the scattering vector g corre-
sponding to a pair of Kikuchi lines.

1 The family of K-line diffraction patterns (Cowley, 1981) comprises among
others Kikuchi patterns, EBSD patterns, electron channeling patterns,
convergent-beam electron diffraction (CBED) patterns, and X-ray Kossel
and pseudo-Kossel patterns.

2 For electron diffraction patterns from complex crystal structures, Wright et
al. (2019) proposed the use of a criterion based on the integrated intensities of
reflections in dynamically simulated patterns.
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where aj is the jth basis vector of the reciprocal lattice (cf.

Busing & Levy, 1967).

2.3. Vector magnitudes and reflection intensities

For complex crystal structures, to match scattering vectors

to reciprocal-lattice vectors one needs to take into account the

vector magnitudes. With some patterns, e.g. Laue patterns or

most EBSD patterns, the magnitudes of the scattering vectors

are not accessible. Depending on the accessibility of the vector

magnitudes, there are two basic types of input data. One type

relies on the measured coordinates of complete scattering

vectors, the other on the directions of the scattering vectors.

Clearly, the case with known vector magnitudes can be

reduced to one with known directions by normalizing all

vectors.

Moreover, in some cases, reflection intensities need to be

taken into account (cf. Chen et al., 2012), but it is common to

index diffraction patterns based on their geometry, with

intensities used only for dichotomous division of reflections

into ‘on’ and ‘off’ types.

Crystal structures encountered in metallurgy and materials

science are often relatively simple, and both vector magni-

tudes and reflection intensities can be ignored. The initial

considerations below account for vector magnitudes, but the

algorithms are limited to the case of normalized vectors. This

simplifies the procedures and their description. It is also clear

that such procedures still allow for indexing a broad range of

diffraction patterns. In particular, they index bands in patterns

obtained via EBSD – the technique that is nowadays the main

tool for orientation mapping.

The described methods can also be applied to more

complex structures (say, in macromolecular crystallography)

assuming that the accuracy of the input data is adequate to the

complexity; clearly, the temporal effectiveness of the algo-

rithms is affected by the large number of reflections appearing

in such cases.

3. Formal aspects of end-indexing

3.1. Basic relationships

As was mentioned before, the key idea for indexing

procedures is to match the scattering vectors obtained from

the diffraction pattern and the vectors of the crystallographic

reciprocal lattice. The reciprocal-lattice vectors corresponding

to detectable reflections will be denoted by hm , with m ranging

from 1 to a certain M. The coordinates of these vectors are

given in the Cartesian frame attached to the crystal. On the

other hand, by analyzing diffraction reflections one gets

scattering vectors gn enumerated by n = 1, . . . , N, with

Cartesian coordinates in the sample reference system.

Each legitimate vector gn corresponds to a certain hm , and

the task is to match the scattering vectors gn with some

properly oriented reciprocal-lattice vectors hm . In principle,

each gn (n = 1, . . . , N) is to be matched to a unique hm
(m = 1, . . . , M), i.e. indexing is the procedure of determining

an injective mapping $:{1, . . . , N} ! {1, . . . , M} ascribing

subscripts enumerating vectors hm to subscripts of vectors gn.

With known $, Miller indices (hkl) = (h1h2h3) of the nth

reflection (or the scattering vector gn) are hi = ai � h$(n), where

ai is the ith basis vector of the direct lattice. Point-symmetry

operations map the set of hm vectors onto itself and induce

permutations of the elements of the set {1, . . . , M}. If � is

such a permutation, the assignment $ is equivalent to �$.

Knowing one representative of the class of equivalent

assignments, it is straightforward to get all other elements of

that class.

Apart from experimental errors, there exists a proper

rotation, say O, transforming all vectors gn onto vectors hm , i.e.

h$(n) = Ogn for all n in {1, . . . , N}.3 Let the Cartesian coor-

dinates of the vectors gn and hm constitute columns of matrices

G and H, respectively. The relationship between vectors gn
and hm can be briefly expressed as

OG ¼ HP;

where P is an unknown M�N matrix representing $. P has

zero entries everywhere except a value of 1 at each entry (mn)

such that the vector hm corresponds to the vector gn , i.e. there

is exactly one ‘1’ in each column of P. The search for O

corresponds to the orientation determination problem, and

the search for P solves the indexing problem.

It is obvious that random errors in the locations of detected

reflections are inevitable. These errors affect the scattering

vectors and the entries of G, and the matrix OG is then

only approximately equal to HP. Therefore, one can portray

the considered problem (with error-affected but legitimate

scattering vectors) in the following form: find P ($) and O

minimizing

XN
n¼1

h$ðnÞ �Ogn
�� ��2¼ kHP�OGk2; ð1Þ

where kXk = [tr(XTX)]1/2 denotes the Frobenius norm of

matrix X. In this formulation, the problem lies in the domain

of combinatorial (P or $) and continuous (O) optimization.

3.2. Related solvable problems

It is instructive to break down the problem of minimization

of equation (1) into simpler problems concerning the case of N

= M, i.e. with the sets of matched vectors having the same

cardinality, and the matrices G on H having the same

dimensions. These simplified partial problems are, first, how to

get the permutation matrix P minimizing kHP � Gk2, and

second, how to get the special orthogonal matrix O minimizing

kH � OGk2.

The first problem is directly related to the linear assignment

problem: given a real N�N cost matrix C, find a permutation

matrix P minimizing tr(PCT). It is solved by the classic Kuhn

Hungarian algorithm (Kuhn, 1955). The minimization of

kHP � Gk2 is easily reduced to a linear assignment problem

with the cost matrix C = �HTG.
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The minimization of kH�OGk2 with respect to O is related

to the problem of determination of the special orthogonal

matrix nearest to a square matrix: given an invertible square

matrix A, determine the special orthogonal matrix SOðAÞ
minimizing kA � Ok2. A general way of getting SOðAÞ is via

singular value decomposition of A. With A = U�VT, one has

SOðAÞ ¼ USVT;

where S = diag[+1, +1, sign(det(A))]. Alternative methods of

getting SOðAÞ rely on polar decomposition of A (Morawiec,

2004) or use the link between special orthogonal matrices and

quaternions (Morawiec, 1998). The problem of getting a

special orthogonal matrix matching corresponding vectors is

frequently referred to as determination of absolute orienta-

tion. Given two sets of corresponding vectors in the form of

the matrices G and H such that HGT is invertible, the function

kH � OGk2 has a minimum at

O ¼ SOðHGTÞ;
i.e. the problem of getting the absolute orientation is reduced

to finding the special orthogonal matrix nearest to HGT

(MacKenzie, 1957; Wahba et al., 1966; Kabsch, 1976, 1978;

Stephens, 1979). Each advanced orientation determination

program uses this or another form of the operator SO.

3.3. Rotations versus proper rotations

There is an issue of the domain of O in equation (1): one

may ask whether this domain comprises all rotations or just

proper rotations. A couple of facts need to be recalled. First,

orientation of an object (a crystallite) corresponds to a proper

rotation and is determined by a special orthogonal matrix.

Second, almost all materials studied by orientation mapping

have centrosymmetric crystal structures. Third, the figure built

of vectors hm is centrosymmetric due to Friedel’s law. In the

case of centrosymmetric crystals, with the matrix O relating G

to HP assumed to be special orthogonal (i.e. the matrix may be

a result of using SO), one gets a single solution modulo the

proper operations of the Laue group. If the matrix relating G

to HP was allowed to be orthogonal, one would get a single

solution modulo all operations of the Laue group. If the

crystal structure is non-centrosymmetric, then because of

Friedel’s law the unequivocal crystallite orientation is in-

determinable by conventional orientation mapping methods

(see Appendix A).

3.4. Spurious scattering vectors and computational context

The crystallographic problem described in Section 3.1 is

formally similar to the problem of registering two figures of

research papers
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Figure 2
A two-dimensional illustration of the relationship between the reciprocal-lattice and scattering vectors corresponding to detected reflections. (a) The
nodes of the reciprocal lattice. (b) Vectors hm with endpoints at nodes corresponding to detectable reflections, i.e. figure H. (c) Rotated vectors hm. (d)
Rotated vectors hm corresponding to detected reflections, i.e. error-free scattering vectors. (e) The scattering vectors affected by experimental errors. (f)
Error-affected and false scattering vectors, i.e. figure G.
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spatially distributed points, which arises in other fields. In

computer science, with points as graph vertices and distances

between points as attributes (weights) of edges, the problem

can be seen as inexact edge-attributed subgraph matching

[see e.g. chapter 2 of the work by Bengoetxea (2002)]. If

reflection intensities are taken into account, it turns into

edge-attributed (by distance) vertex-attributed (by intensity)

subgraph matching. In computational geometry, one considers

geometric point-pattern matching. It is usually formulated in

terms of point ‘sets’ and in a more general framework of rigid

motion: given two sets G and H of spatially distributed points,

determine the smallest "H such that there is a rigid motion of

the ‘query’ figure G that brings each of its points within a

distance "H of a point in H [see e.g. Goodrich et al. (1999)]. In

other words, the task is to match the figure G to a subfigure of

H.4 With G being a figure composed of endpoints of the

scattering vectors gn and H denoting a figure composed of

endpoints of reciprocal-lattice vectors hm , the indexing

problem is to determine an optimal subfigure of H nearly

congruent to the complete figure G.

However, the account of Section 3.1 is not complete as it

ignores an important aspect of automatic detection of reflec-

tions: the input data are affected not only by small inaccura-

cies in reflection positions, but also by gross errors, leading to

illegitimate scattering vectors. For a graphic illustration of the

problem, see Figs. 2 and 3. With spurious reflections present,

instead of equation (1) it is more suitable to consider the

function

N�1
c

XN
n¼1

wn h$ðnÞ �Ogn
�� ��2; ð2Þ

where the binary weight wn = 1 if gn is legitimate, wn = 0

otherwise, and the number of non-zero terms Nc =
PN

n¼1 wn is

not smaller than an assumed limit. If gn is spurious, the vector

Ogn at the true orientation is likely to be distant from all

vectors hm , i.e. the nth term is likely to be large. It is therefore

likely to be eliminated because the value of function (2) is

reduced most by setting to zero the weights of the largest

terms.

The simplest approach to this complication is to eliminate

spurious scattering vectors by considering subsets of the

complete set of these vectors, and to use some additional

criterion of accepting a solution for a given subset. Allowing

for spurious vectors is an integral part of an eminent issue of

computational geometry known as the largest common point

set (LCPS) problem: given two point sets G and H and a

positive number �, determine the largest subfigure G0 of G such

that there is an isometry carrying G to a position in which each

point of G0 is not further than � from a point ofH (e.g. Ambühl

et al., 2000). The subfigure of H nearly congruent to G0 will be

denoted by H0. With the isometry being a proper rotation and

the elements of G and H identified with, respectively,

endpoints of gn and hm vectors bound to the fixed center of

rotation, the indexing problem can be seen as a simplified

version of the algorithmic LCPS problem.

The problem of orientation determination in the presence

of spurious reflections is close to the practical problem of

registering two clouds of points studied in the field of

computer vision. Algorithms used for object recognition and

for aligning 3D shapes are not necessarily directly applicable

to indexing, but numerous approaches are considered in that

field and ideas used there can be inspiring. Again, in general,

these methods involve translation, whereas in orientation

determination the translation term is fixed to zero.

Important for indexing is the case where the magnitudes of

the scattering vectors are ignored and the magnitudes of all

involved vectors are set to 1. The corresponding restricted

case of LCPS is referred to as the constellation problem

(Cardoze & Schulman, 1998): given two sets G andH of points

on the unit sphere, determine a rotation carrying the largest

subset of G to a position approximating a subset of H. The

constellation problem is also portrayed as the star identifica-

tion problem which arises in the determination of satellite

orientation (attitude) (Zhang, 2017). A graphic illustration of

the constellation problem is given in Fig. 4.

The matching problems in particular fields have specific

features, and there are similarities and some differences. The

most important characteristic aspect of the crystal orientation

724 Adam Morawiec � Indexing of diffraction patterns Acta Cryst. (2020). A76, 719–734
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Figure 3
A schematic 2D illustration of the orientation determination problem
based on Fig. 2. It shows the input data available when the magnitudes of
the scattering vectors gn are known. The task is to find the rotation of G
leading to the ‘best match’ between ‘large’ subfigures of G and H.

Figure 4
A schematic 2D illustration of the orientation determination problem in
the case when the magnitudes of the scattering vectors are not known and
all vectors are normalized to 1 (i.e. illustration of the constellation
problem). It is based on Fig. 2.

4 Formally, "H is the one-sided Hausdorff distance from transformed G to H.
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determination problem is that, unlike most other matching

problems, it is affected by crystal symmetry, i.e. the figureH is

symmetric. Other differences depend on the compared cases.

Compare, for instance, the indexing of diffraction patterns

with star identification. The solid angle (field of view) covered

by a star tracker is small and, in consequence, the angles

between star-indicating vectors are small. Moreover, the

number of false or undetected stars is relatively small and the

identification can be based on nearest-neighbor separation.

This is not true in indexing: the angles between scattering

vectors in G can be arbitrarily large, the fraction of false

reflections can be large, and many reflections can be un-

detected. In star identification, often the scale of the star

patterns is to be determined (Groth, 1986); in indexing, there

is no need to scale the patterns.

4. Accumulation

As was noted above, to deal with spurious scattering vectors,

one needs to match test subfigures of G and H and specify

criteria for accepting a match as the solution. In principle, one

may use arbitrary k-tuples from G and H as matching

elements. However, since the fraction of spurious scattering

vectors in G can be large, the test subfigures must be small. In

practice, the matching algorithms are based on pairs (e.g.

Wenk et al., 1997; Chung & Ice, 1999) triplets (e.g. Tamura et

al., 2003; Tamura, 2014) or quadruplets (e.g. Mortari et al.,

2004; Heyl, 2013) of vectors.

The most reliable matching algorithms rely on accumula-

tion. Matched elements, i.e. pairs or triplets, cast votes (Ohba

et al., 1981; Groth, 1986), i.e. they contribute to an accumu-

lation space, and the final solution is based on the results of the

voting. The advantage of accumulation-based methods lies in

their robustness and conceptual simplicity. The algorithms are

relatively easy to implement. Accumulation can be made in

the discrete space of assignments or in the continuous space of

crystal orientations, and these two cases are considered in

Sections 5 and 6, respectively.

4.1. Rotation relating two k-tuplets of vectors

With k � 3, the rotation transforming a k-tuple

ðĝgn1
; . . . ; ĝgnkÞ to a position closest to that of ðĥhm1

; . . . ; ĥhmk
Þ is

given by the formula for absolute orientation,

OðkÞ ¼ SO ĥhm1
ĥhm2

. . . ĥhmk

� �
ĝgn1

ĝgn2
. . . ĝgnk

� �T
� �

: ð3Þ

Clearly, the above expression and its interpretation are valid if

ĥhmi
and ĝgni are replaced by hmi

and gni , respectively, but from

now on the focus will be on normalized vectors, because the

strategies described below rely on such vectors. Equation (3)

cannot be directly extended to get a rotation matching two

2-tuples. An easy way of circumventing this problem is to use

equation (3) for k = 3 with the third linearly independent

vectors being the cross products g� = ĝgn1
� ĝgn2

and h� =

ĥhm1
� ĥhm2

; one has

Oð2Þ ¼ SO ĥhm1
ĥhm2

h�
� �

ĝgn1
ĝgn2

g�
� �T

� �
¼ r̂r

h
1 r̂r

h
2 r̂r

h
3

� �
r̂r
g
1 r̂r

g
2 r̂r

g
3

� �T
; ð4Þ

where r̂r
g
1, r̂r

g
2 and r̂r

g
3 represent normalized versions of g�,

ĝgn1
þ ĝgn2

and ĝgn1
� ĝgn2

, respectively, and the r̂r
h
i vectors are

defined in an analogous way based on ĥhmi
vectors (Morawiec,

2015). The essential point is that O(2) given by equation (4)

transforms the pair ĝgn1
, ĝgn2

to the position closest to that of ĥhm1
,

ĥhm2
. With the last part of equation (4), the computation of this

optimal rotation matrix involves only elementary arithmetic

operations, i.e. there is no need to apply the operator SO.

The case of k = 2, i.e. pairwise matching, is particularly

convenient. It is in a sense elemental among those providing

discrete solutions. In matching based on k larger than two,

additional vectors sharpen the criteria for the congruence of

given subsets. On the other hand, using higher-order k-tuples

increases the computational costs. To avoid combinatorial

explosion, k needs to be kept small. Moreover, numerical

experiments show that, with error-affected data, higher-order

k-tuples do not really improve the quality of indexing (cf.

Fig. 10 below.)

Critical for the temporal performance of the above algo-

rithms is the number of k-tuples. In practice, the number of

actual matchings is reduced by considering only k-tuples with

certain characteristics. One needs to use features allowing for

the elimination of as many redundant k-tuples as possible.

Most of the matchings can be omitted by observing that the

vectors ĝgni can match ĥhmi
only if the angles between the

vectors of the k-tuples differ by less than a given threshold; if

not, the k-tuples are rejected as a possible match. This is

particularly simple when k = 2: the vectors ĝgn1
and ĝgn2

can

match ĥhm1
and ĥhm2

only if the angle between ĝgn1
and ĝgn2

is close

to that between ĥhm1
and ĥhm2

. Additionally, due to crystal

symmetry, some k-tuples of reciprocal-lattice vectors are

equivalent, and only one representative of these k-tuples

needs to be considered. In the simplest approach, it is enough

to use only one vector of a family of symmetrically equivalent

reciprocal-lattice vectors as the first vector ĥhm1
of a k-tuple.

5. Accumulation in discrete space

Of all possible assignments, one looks for the one with the

largest support from matching of k-tuples. Briefly, pairs of

k-tuples vote for assignments, and the one with the largest

number of votes is assumed to solve the problem. The quality

of the solutions is reflected in the number of matched vectors

(i.e. the cardinality of the sets G0 and H0). Knowing the

assignment P, the resulting orientation is O = SOðHPG 0TÞ,
where G0 is the matrix with vectors of G0. Orientation deter-

mination by accumulation in a discrete space is similar to

geometric hashing – a voting-based method used for object

recognition (Wolfson & Rigoutsos, 1997). To give an example,

a strategy (A) based on pair-matching and accumulation in a

discrete space is described in detail. Two other strategies of

this kind (B and C) are listed in Appendix B. As was noted

research papers

Acta Cryst. (2020). A76, 719–734 Adam Morawiec � Indexing of diffraction patterns 725
electronic reprint



above, the strategies are limited to the case of normalized ĥhm
and ĝgn vectors.

5.1. Example strategy (A)

The preliminary step is to create a list (hereafter referred

to as LIST) of angular distances between ĥhm vectors; with

the angle between ĥhm1
and ĥhm2

being dh = dðĥhm1
� ĥhm2
Þ =

arccosðĥhm1
� ĥhm2
Þ, the entry added to the list has the form of the

quintuplet (dh, f1, k1, f2, k2), where fi indicates the family (i.e. a

set corresponding to certain {hkl}) of symmetrically equivalent

vectors to which hmi
belongs, and ki indicates the particular

vector of the family. Clearly, each pair (fi, ki) identifies a

reciprocal-lattice vector. The list is shortened thanks to crystal

symmetry; for symmetrically equivalent pairs separated by

the same distance, only one representative quintuplet

(dh, f1, k1, f2, k2) needs to be saved.5 The list is sorted by the

distances dh. With this, determining the items matching the

angular distance between a pair of ĝgn vectors is fast. LIST is

created once for all patterns of a given phase.

For a given pattern, an accumulation (vote count) table

V(n, f) will be needed. It is indexed by n enumerating the

scattering vectors ĝgn obtained from the pattern, and by f (=

1, . . . , Mf) enumerating the families of equivalent reciprocal-

lattice vectors. The table V is initialized with zero entries.

The indexing of the pattern begins with accumulation loops.

For each pair ðĝgn1
; ĝgn2
Þ such that n1 < n2 get the angular

distance dðĝgn1
; ĝgn2
Þ. From the LIST of quintuplets

(dh, f1, k1, f2, k2) retrieve all items with dh deviating from

dðĝgn1
; ĝgn2
Þ by less than a given threshold. This threshold, say

p1, is a parameter of strategy A. The families fi which appear in

the retrieved items constitute a set S (without duplicates).

Each element of the set casts votes for both ĝgn1
and ĝgn2

, i.e. for

each fi in S the values of V(n1, fi) and V(n2, fi) are increased

by 1.

With the accumulation completed, the larger the value of

V(n, f) for a given n, the larger the probability that ĝgn matches

a vector from the f th family. At this point, one has the families

(or indices {hkl}) expected to correspond to each scattering

vector, whereas the task is to get the concrete vector [or

indices (hkl)] modulo the Laue symmetry of the crystal. A

simple approach is to assume that ĝgn matches a vector of the

single family arg maxf Vðn; f Þ, but clearly one can ascribe two

or more families with the highest number of votes. The

number pd of ascribed families is another parameter of

strategy A.6 In the particular implementation described below,

this parameter is fixed at pd ¼ maxðbMf=2c; 1Þ.
In the final stage, one needs to discriminate between

members of families of equivalent vectors. This stage can be

performed in various ways. One could look for a consistent

solution by considering only angular distances, but more

convenient is a method involving orientation: for every pair

ðĝgn1
; ĝgn2
Þ satisfying n1 < n2 , construct all pairs of vectors

ðĥhm1
; ĥhm2
Þ such that only the vectors ĥhmi

from the family

(familes) ascribed to ĝgni in the previous step are allowed to

correspond to ĝgni . Based on ðĝgn1
; ĝgn2
Þ and ðĥhm1

; ĥhm2
Þ, using

function (2), get a trial orientation O(2). Having the trial

orientation, one can perform a trial indexing: for each vector

O(2)gn (n = 1, . . . , N) one finds the closest of unmatched

vectors ĥhm . If the distance between O(2)gn and the closest

vector, say ĥhmx
, does not exceed a given threshold (parameter

p2 of strategy A), this closest vector is ascribed to gn , i.e.$(n)

= mx ; otherwise, gn is considered to be spurious. The problem

is solved by the assignment $ leading to the smallest number

of spurious gn vectors. At the end, one needs to apply SO to
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Figure 5
Algorithm A: a simplified description of strategy A for computing crystal
orientation from normalized scattering vectors ĝgn.

5 The above issue is simple but a word of caution is in order. Matrices O(2)

given by equation (4) represent proper rotations. This affects the allowed
relationships of equivalence between pairs of ĥhm vectors. Take the m3m crystal
symmetry. The angular distance between the vectors h1 = (101) and h2 = (221)
is �/4. The same distances separate the vectors h01 = (011) and h02 = (212), and
the vectors h001 = (011) and h002 = (221), but of these two only the pair (h01; h

0
2) is

related to (h1, h2) by a symmetry operation being a proper rotation; the same
concerns the pair (�h001;�h002 ) but not the pair (h001; h

00
2 ).

6 In this step, Mf � pd families are rejected as potential ascriptions to ĝgn. One
may build a more sophisticated rejection algorithm, in which the accumulation
stage is repeated, but this time only the pairs consisting of vectors from earlier-
accepted families are allowed to cast votes. The results of the second voting
round are saved in V. There is an analogy between this second voting and an
extension to the Hough transform known as back-mapping (Gerig & Klein,
1986). See also Kolomenkin et al. (2008).
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legitimate gn vectors and their partners ĥh$ðnÞ to get the

orientation O. In the case of a draw (i.e. the same number

of spurious vectors for different orientations), the result

with the smallest residue is used as the final solution.

The residue can be defined as e.g.
P

n wnjĥh$ðnÞ �Oĝgnj2 orP
n wn arccosðĥh$ðnÞ �OĝgnÞ; like in function (2), wn = 1 if gn is

legitimate, and wn = 0 if gn is spurious. A simplified description

of strategy A is given in Fig. 5.

5.2. Triplet voting

A natural extension of pair-based voting is voting by

triplets. Such a method was applied in a program for indexing

of Laue patterns (Ohba et al., 1981). There is a family of

algorithms used for autonomous star recognition based on

triplets of stars (e.g. Groth, 1986); they are also known as the

‘triangle algorithms’ (Zhang, 2017). Triplet voting is used for

indexing EBSD patterns in the commercial OIM Analysis

system (Wright & Adams, 1992; Adams et al., 1993).

Triplet-based accumulation can be implemented by simply

modifying a pair-based method. To cast votes, instead of pairs,

vectors ĝgn must constitute triplets nearly congruent to triplets

of ĥhm vectors. Other aspects of indexing are, mutatis mutandis,

the same as in pairwise voting. For illustration, such a modi-

fication of strategy A is described in Appendix B as strategy D.

5.3. Example implementation

The algorithms A–D have been implemented in a

(Fortran90) program called KiKoCh2. It stems from KiKoCh

(Morawiec et al., 2002) which was designed for indexing of

Kikuchi patterns, but besides the name little of this pre-

decessor is left in KiKoCh2. The applicability of the proce-

dures and of the program for indexing of various patterns are

illustrated in the figures below. KiKoCh2 can be used to index

EBSD and standard Kikuchi patterns (Fig. 6), but it also works

for patterns recorded with much smaller acquisition angles.

Fig. 7 shows an example result with indexing of K lines in the

central disk of a CBED pattern in which the diameter of the

disk is about 1/10 of the camera length. It is also applicable to

Laue patterns originating from simple structures (Fig. 8) and

to indexing of Kossel patterns (Fig. 9). KiKoCh2 is included

in the package TEMStrain for analysis of CBED patterns

(Morawiec, 2007) and in the package KSLStrain for analysis

of Kossel patterns (Morawiec et al., 2008; Morawiec, 2016).

The program is available at http://imim.pl/personal/adam.

morawiec/.

6. Accumulation in rotation space

Contributions can also be accumulated in the space of orien-

tations (or more precisely, in the symmetry-induced funda-

mental region of the orientation space; Morawiec, 2004).

Contributions can be made by individual vectors (one vector

from each G andH), and in this case accumulation takes place

along continuous curves in the parameter space. With two or

more vectors from each set, accumulation takes place at

discrete points (Morawiec & Bieda, 2005).

6.1. Accumulation at points of the rotation space

For the k-tuple (k � 2) of vectors ĝgni from G and the k-tuple

of vectors ĥhmi
from H (i = 1, . . . , k), the special orthogonal

matrix representing the best rotation of ĝgni to ĥhmi
is given by

equations (3) and (4). To determine the rotation carrying the

largest subset of G to a subset of H, all k-tuples from G and

from H are considered, and each pair of k-tuples contributes

to a point in the rotation space. The amount of contribution

made to the parameter space by a given pair of k-tuples can be
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Figure 6
(a) Experimental Kikuchi pattern of chromium carbide Cr3C2 alloy
(courtesy of E. Bouzy). (b) Simulated Kikuchi lines in orientation
determined using strategy A based on marking lines manually positioned
on the experimental pattern.
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constant, but it may also be weighted by the quality of the

match between the k-tuples.

Assuming exact congruence between the largest matching

subsets of G and H, the rotation relating them gets the largest

number of contributions, and the problem of orientation

determination is reduced to locating a maximum of the

contributions. The same approach is applicable to experi-

mental patterns, but a tolerance needs to be allowed. At the

end, knowing the crude orientation, the matching figures G0
and H0 and the assignment between their elements are

determined, and the operator SO is applied to them to get the

final orientation. This method has been implemented a

number of times; see e.g. strategy 4 for indexing Kikuchi

patterns in the report by Morawiec (1999) or a strategy for

indexing Laue patterns described by Kalinowski et al. (2011).

6.2. Accumulation along curves in the space of rotations

Contributions can also be accumulated based on individual

vectors, i.e. with k = 1 (Morawiec & Bieda, 2005). Let R(v, !)
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Figure 8
(a) An experimental Laue pattern of an organic compound published by
Ravelli et al. (1996). Reproduced with permission of the International
Union of Crystallography. (b) A Laue pattern simulated for orientation
determined using strategy A based on spots automatically detected on the
experimental pattern.

Figure 7
(a) The central disk of an experimental CBED pattern of a TiAl alloy
(courtesy of G. Brunetti). (b) Simulated lines in orientation determined
using strategy A based on marking lines manually positioned on the
experimental pattern.
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be the special orthogonal matrix of the rotation by the angle !
about the axis determined by v. Given two vectors ĝgn and ĥhm in

G andH, respectively, one looks for all rotations transforming

ĝgn on ĥhm. Assuming that ĝgn 6¼ �ĥhm, these rotations are

represented by the matrices

Oð1Þð!Þ ¼ Rðĝgn þ ĥhm; �ÞRðĝgn; !Þ: ð5Þ

They constitute an !-parameterized geodesic in the rotation

space. Each pair ðĝgn; ĥhmÞ contributes to rotations located on

one of such curves. In practice, the contributions are made

along the curves at some small intervals of !.

As in the case of k � 2, the rotation relating the largest

matching subsets of G and H gets the largest number of

contributions, and again the problem is reduced to locating the

global maximum of the contributions in the accumulator

space. The maximum corresponds to the parameters of the

sought rotation. This approach to orientation determination

and indexing is a form of the generalized Hough transform.

An implementation of a variant of this method is described by

Schmidt (2014), and see also Beyerlein et al. (2017) and

Gevorkov et al. (2020).

6.3. Maxima in rotation space

As in all accumulation-based methods, at the end one needs

to determine the locations of maxima in the accumulator

space, i.e. in the symmetry-induced fundamental region in the

space of proper rotations. Since the match between vectors

is only approximate, some tolerance must be allowed. A

straightforward way of evaluating the contributions is by

partitioning the space into equivolume bins of a size linked to

the precision of the experimental data and the resolution of

the resulting orientations. The center of the bin with the

largest accumulation is the sought rotation matching the

largest subsets of G andH. With this approach, however, extra

measures are needed to take account of contributions

distributed in neighboring bins or near borders of the funda-

mental region.

Instead of binning, methods of cluster analysis can be

implemented. One approach (particularly suitable for resol-

ving the discrete cases with k � 2) is to use a list of potential

solutions; every new orientation obtained from equations (3)

or (4) is compared with already saved potential solutions. If

the orientation deviates from an earlier-saved solution by an

angle smaller than a given threshold, the ranking number of

that solution is increased, and the solution is corrected by

taking the weighted average (Morawiec, 1998) of the solution

and the new orientation. Otherwise, the orientation is

appended to the list as a new potential solution.

Contributions can also be made by adding continuous

orientation components, e.g. represented by coefficients of an

expansion of a peak into (symmetrized) generalized spherical

harmonics. In this case, one needs a method of searching for

global extrema of functions on the rotation space given by

analytical expressions. One way is to search for local extrema

using, say, one of the gradient methods, starting from points on

a nearly uniform grid (Roşca et al., 2014; Larsen & Schmidt,

2017; Quey et al., 2018). The highest of these local maxima is

considered to be the global maximum. Clearly, the grid density

must correspond to the width of the peaks of the function.

6.4. Other orientation-based algorithms

For completeness, one needs to the mention orientation-

based methods used in computer vision for 3D registration.

The most popular iterative closest point (ICP) algorithm

(Besl & McKay, 1992) has “difficulty correctly registering ‘sea
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Figure 9
(a) An experimental Kossel pattern of pattern of a CuBeAl alloy
(Bouscaud et al., 2014) (courtesy of D. Bouscaud). (b) Simulated Kossel
K�1 lines in orientation determined using strategy A based on marking
points manually positioned on the experimental pattern.
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urchins’ and ‘planets”’, and these are the shapes of G and H
figures in the indexing problem.7 There are, however, exten-

sions of ICP such that each point of the ‘model’ H interacts

with all ‘data’ points of G (Tsin & Kanade, 2004). For example,

in the ‘softassign matching’ algorithm of Rangarajan et al.

(1997), the mixed (combinatorial + continuous) problem is

replaced by a purely continuous nonlinear problem; the matrix

representing the combinatorial part of the problem is allowed

to have continuous entries, and its evolution in the optimiza-

tion process is guided by additional constraints and barrier

functions.

A simple way of turning the registration into minimization

of a continuous function is known as the kernel correlation

method (Tsin & Kanade, 2004). Briefly, in the case without

translation, the problem of orientation determination is

reduced to finding the proper rotation O minimizing

f ðOÞ ¼ �
XM
m¼1

XN
n¼1

exp
� hm �Ogn
�� ��2

2�2

 !
: ð6Þ

With unit vectors ĥhm and ĝgn, this function takes the form

�Pm

P
n expðĥhm �Oĝgn=�

2Þ, i.e. it is a sum of von Mises–

Fisher functions (Morawiec, 2004). The above expressions are

based on the Gaussian kernel, but clearly other kernels can be

used.

It is worth noting that, similar to equation (6), one could get

the orientation by locating the global minimum of the function

f ðOÞ / N�1
c

XN
n¼1

wnðOÞmin
m

hm �Ogn
�� ��2;

where wn(O) = 1 if minm j hm �Ogn j<� and wn(O) = 0

otherwise, and Nc =
PN

n¼1 wnðOÞ is the number of non-zero

terms. With unit vectors ĥhm and ĝgn, the function can be

expressed as

f ðOÞ / N�1
c

XN
n¼1

wnðOÞ max
m

ĥhm �Oĝgn;

where wn(O) = 1 if maxm ĥhm �Oĝgn > 1� � and wn(O) = 0

otherwise. This is in a sense a trial-and-error approach

accounting for all orientations (f as a function of O) and all

assignments (search for minm j hm �Ogn j2 or maxm ĥhm �Oĝgn
for each Oĝgn). Strategy B and the final stage of strategy A are

based on the same principle, but instead of considering all

orientations, only those matching pairs of vectors are tested.

Clearly, with this and similar approaches, an additional

computational device promoting solutions with large Nc is

needed.

7. Testing of indexing algorithms

The standard method of checking the quality of indexing

algorithms is to generate artificial data based on known initial

orientations, add errors, run the program, and check the

deviations between the resulting orientations and the true

initial orientations.

Both the indexing success rate and speed depend on the

types of patterns and the lengths of the lists of matched

vectors. Example results (success rate versus random errors)

of tests on simulated EBSD bands for �-Ti are illustrated in

Fig. 10. The figure shows the performance of algorithms A, B,

C, D and a triplet-based accumulation in orientation space

(Morawiec, 1999). For these particular data, the algorithms A–

D outperform the accumulation in the orientation space in

terms of robustness to large random errors. The speeds of

indexing with strategies A–D were similar, with the fastest (A)

processing more than 15 000 patterns per second and the

slowest (C) nearly 10 000 patterns per second. (CPU times on

a 2.6 GHz personal computer, computation without any form

of parallelism.) Indexing by accumulation in the orientation

space was much slower; the speed was about 200 patterns per

second.

Indexing algorithms usually involve some parameters, and

particular values of these parameters are to be fixed for given

diffraction data. The numbers will depend on the type of

pattern (e.g. Kossel versus Laue), the settings of the pattern

acquisition system (e.g. sample-to-detector distance), the

crystal structure, the level of errors affecting the scattering

vectors etc. The optimal values of these parameters can be
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Figure 10
Example results of tests on simulated EBSD bands for �-Ti. The success
rate (fraction of correctly indexed patterns) is plotted versus random
errors added to band positions. The number of bands per pattern was
seven, of which three were spurious. The level of errors is quantified by
parameter x. The error range for the distance of a band from the pattern
center (band shift) was x � 8% of the pattern diameter. The error range
for band inclination (band slope) was x � 4�. The errors were uniformly
distributed in their ranges. Indexing of an individual pattern was
considered correct if the obtained orientation deviated from the true
one by less than 5�. The results for strategies A and D are not the same
but are visually indistinguishable. The data X marked by stars were
obtained using an algorithm based on accumulation in the orientation
space (Morawiec, 1999).

7 The algorithm is iterative: first, it finds points of the modelH closest to points
of G, i.e. one gets a certain trial assignment $, and second, with this
assignment, the standard registration is applied (minimization of squared
distances between corresponding points, and in our case that would be the SO
operation). It is easy to see that the above procedure leads to a local minimum.
To find a global minimum, the algorithm is run multiple times for a number of
appropriate initial states, but it is still susceptible to local minima.
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determined by checking the quality of indexing on simulated

data having characteristics similar to those of the experimental

data. Clearly, with a properly defined goal function, this can

be done in an automatic way using a minimization program.

In the case of the data shown in Fig. 10, the parameters of

strategies A–D were the same; the success rate could be

improved by tuning the parameters to the strategy and error

level.

In orientation mapping, the quality of the indexing can be

evaluated based on real experimental maps. The better the

routine, the smaller the number of unsolved cases and

misindexing ‘spikes’ on the maps, and the smaller the average

misorientation between neighboring pixels within individual

grains. To estimate the reliability of indexing a single pattern,

one needs a figure of merit.

8. Figures of merit

After indexing an individual experimental pattern, one ulti-

mately has the crystal orientation and the assignment between

some vectors of G and H. With this, one can specify nearly

congruent subfigures G0 andH0 of G andH, respectively. There

is a question about the quality of this congruency and the

reliability of the solution. A number of indicators can be used

and combined to get a final figure of merit. The simplest

measures of quality are the number of detected reflections

which were actually indexed (i.e. the cardinality of the sets G0
and H0), the ratio of the number of indexed reflections to the

number of detected reflections (i.e. the ratio of the cardinal-

ities of the sets G0 and G) and the quality of the match between

G0 and H0 [e.g. the actual value of the expression in function

(2)]. One may also use indicators specific to the used method,

e.g. the number of votes in the accumulation space.

The other issue is how the best solution compares with

other potential solutions, in particular how the best solution

compares with the second-best solution. Quantitative

measures of the dominance of the best solution can be

constructed from the factors listed in the previous paragraph.

A good example of such a parameter is the confidence

index, defined as (v1 � v2)(v1 + v2)�1, where vi is the number

of votes for the ith best solution (Field, 1997). Clearly, the

confidence index is equally suitable in all accumulation-based

algorithms.

Figures of merit can be shown on corresponding maps, e.g.

on confidence index maps. They are sometimes correlated to

physical aspects of diffraction from differently oriented crys-

tallites, and the maps visualize the distribution of these

properties. In particular, the figures of merit are indispensable

for phase discrimination.

9. Final remarks

Indexing of diffraction patterns originating from crystals of

known structures is a key element of most systems for crystal

orientation determination. Such indexing can be reduced to

matching experimental scattering vectors to vectors of the

crystal reciprocal lattice. The paper refers to formally similar

problems (of registering endpoints of vectors) which arise in

other research fields and to methods of solving them. The

indexing is considered from a relatively broad perspective

without limitation to a particular type of pattern. The paper is

focused on indexing methods based on the accumulation of

votes in a parameter space. The latter can be continuous (a

fundamental region in the orientation space) or discrete (the

number of matching vectors). Besides discussing the general

principles of indexing, particular algorithms are described in

detail.

For simplicity, parts of the text above and the algorithms

concern the constellation problem with all involved vectors

having the same magnitude, but it is worth noting that the

described procedures can be relatively easily generalized to

matching vectors with arbitrary magnitudes. One way to

account for vector magnitudes is by using weighted contri-

butions: the larger the difference between magnitudes of

potentially matching vectors the smaller the contribution. It is

also sensible to ban contributions when the difference is larger

than a given threshold.

The accumulation-based indexing methods differ by their

parameter space, nature of contributions (e.g. pairs versus

triplets of vectors), and ways of collecting and counting the

contributions. Depending on demands, one may consider

using various combinations of these methods. In particular, to

improve the reliability of indexing, one may apply multiple

contributions of different types and multiple ways of counting

the contributions. Moreover, whenever the accumulation can

be seen as the generalized Hough transform, its reliability can

be improved by adapting known enhancements of that

transform (Leavers, 1993).

In the above considerations, it was assumed that all

vectors are bound to a fixed center of rotation which corre-

sponds to the position of the source of diffraction. This

position is known only approximately, and additionally it

changes during orientation mapping when the incident beam

scans the specimen. With known indexing, the experimental

scattering vectors can be used to refine the position of the

source. In this case, the goal function depends on the pattern

center, the sample-to-detector distance and the orientation

parameters.

Finally, one needs to stress again that testing on simulated

data is crucial for the development of orientation determina-

tion software. The data need to have error characteristics

similar to those of input data from real diffraction patterns.

The tests allow for fine-tuning of flexible software parameters,

and they give estimates of the reliability, robustness and

accuracy to be expected in real cases.

APPENDIX A
Direct matching

Crystal orientation can be determined without indexing by

matching an experimental pattern to simulated patterns. The
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approach is similar to solving diffraction patterns by human

inspection of an atlas of simulated patterns [see e.g. Krahl-

Urban et al. (1973), Preuss et al. (1974) and Edington (1975)].

In large-scale mappings, experimental patterns are auto-

matically compared with pre-computed simulated patterns.

For each experimental pattern, the best match is obtained

based on a suitably chosen similarity measure. An effective

and standard method of matching intensity images is corre-

lation. Computer-based ‘template matching’ is applicable to

diffraction patterns of various types [see e.g. Rauch et al.

(2008), Gupta & Agnew (2009) and Chen et al. (2015)]. It is

particularly suitable for dealing with electron spot diffraction

patterns; since their dependence on crystal orientation is

relatively weak, the number of templates needed is relatively

small. Note that it is not necessary to cover all possible

orientations. Because of crystal symmetry, it is sufficient to use

an asymmetric domain (fundamental region) of the orienta-

tion space plus a margin of a width resulting from the pattern

acquisition angle.

The natural domain for a complete simulated diffraction

pattern is a sphere. That is why it is natural to match patterns

projected onto a sphere with spherical cross correlation as the

pattern similarity measure (Hielscher et al., 2019; Lenthe et al.,

2019). The correlation of real functions fs (simulated intensity

function) and fp (experimental pattern) on the unit sphere S2

is given by ðfs ? fpÞ ðOÞ =
R
S 2 fsðn̂nÞ fpðOn̂nÞ dn̂n. The correlation

reaches a maximum at the orientation corresponding to the

best match of fs and fp, and the problem is reduced to finding

the maximum of fs ? fp. The above objective function is defined

via a single pattern simulated over the entire sphere, whereas

the domain of the experimental pattern fp is limited to a

window of the detector. This issue is addressed by modifying fp
so there is a smooth decay from the values inside the window

to zero outside it, and by using a correction term accounting

for the shape of the window (Hielscher et al., 2019). The

integrals can be estimated by direct numerical computation,

but this approach is slow. It is more time-efficient to use

expansion of the functions fs and fp into spherical harmonics,

and to express fs ? fp as a series with coefficients given by

expansion coefficients of fs and fp. See Hielscher et al. (2019)

for details.

Clearly, knowing the crystal structure and its orientation,

one can make an additional effort and ascribe Miller indices to

the reflections, but this step is unnecessary when the goal is to

get an orientation.

Direct matching of patterns has some advantages over

orientation determination via reflection indexing. It

may be preferable in the case of patterns with diffuse

reflections, e.g. patterns originating from highly deformed

samples. Moreover, direct matching accounts for intensities

and this makes a difference in phase discrimination. In

particular, it can discriminate between phases with the same

types of Bravais lattices (e.g. Ram & De Graef, 2018). In

principle, it allows for discriminating chiralities (Winkelmann

& Nolze, 2015) or polarities (Naresh-Kumar et al., 2017) of

crystallites. Its main disadvantage is the high computational

cost.

APPENDIX B
Other strategies

B1. Strategy B

At the outset, as in strategy A, the preliminary step is to

create the LIST of quintuplets (dh, f1, k1, f2, k2).8 Indexing

strategy B is similar to the final stage of strategy A. It relies on

trial orientations from the beginning. The steps are as follows.

(i) For each pair ðĝgn1
; ĝgn2
Þ (n1 < n2), get the angular distance

dðĝgn1
; ĝgn2
Þ and retrieve from the LIST all items with distances

dh within a threshold p1 from dðĝgn1
; ĝgn2
Þ.

(ii) For every retrieved item (dh, f1, k1, f2, k2), using equa-

tion (4), get a trial orientation O(2) based on the pairs ðĝgn1
; ĝgn2
Þ

and ðĥhm1
; ĥhm2
Þ, where mi is determined by the pair (fi, ki).

(iii) Having the trial orientation, perform a trial indexing:

for each vector Oð2Þĝgn (n = 1, . . . , N), get the closest of

unmatched vectors ĥhm. If the distance between Oð2Þĝgn and

the closest vector ĥhmx
does not exceed a threshold p2 , ĥhmx

is

ascribed to gn , i.e.$(n) = mx; otherwise, ĝgn is considered to be

spurious. The problem is solved by the assignment $ leading

to the smallest number of spurious gn vectors.

(iv) At the end, one needs to apply SO to legitimate gn
vectors and their partners ĥh$ðnÞ to get the orientation O. In the

case of a draw (the same number of spurious vectors for

different orientations), the result with the smallest residue is

used as the final solution.

This strategy is suitable for early exit. If a solution reached

at a certain stage of matching has a satisfactory figure of merit,

further search for even better solutions can be abandoned.

B2. Strategy C

The first steps of C are similar to strategy B. One constructs

the LIST, and one gets the admissible trial orientations O(2)

based on pairs of vectors. As above, this involves a threshold

p1. Moreover, like in strategy A, one needs an accumulation

table V(n, f).

Having the trial orientation, a trial indexing is performed in

the following way: for each vector O(2)gn (n = 1, . . . , N), get

the closest of vectors ĥhm. If the distance between O(2)gn and

this closest vector, say ĥhmx
, does not exceed a threshold p2 , gn

is considered legitimate and $(n) = mx. Let NL denote the

number of legitimate vectors obtained for this trial orienta-

tion. If NL � 3, there is the accumulation step

Vðn; f Þ  Vðn; f Þ þ N
p3
L ;

where f represents the family of the vector ĥh$ðnÞ and p3 is a

parameter. At the end of this stage, having the accumulation

table V, pd families with the highest number of votes in V(n, �)
are ascribed to ĝgn. (In KiKoCh2, pd = 1.)

The final stage of getting the orientation and assignment is

the same as in the case of strategy A; this involves another

parameter (which in KiKoCh2 is set equal to p2).
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B3. Strategy D

This is an example strategy based on triplets of vectors. It is

a modified version of strategy A, and the preliminary steps are

the same in both cases. The accumulation stage is different.

For each triplet ðĝgn1
; ĝgn2

; ĝgn3
Þ, get the angular distances

dðĝgn1
; ĝgn2
Þ, dðĝgn2

; ĝgn3
Þ and dðĝgn3

; ĝgn1
Þ. For each of these three

distances, retrieve from the LIST the items such that the

deviation between the distance and dh is smaller than a given

threshold. The threshold, say p1, is a parameter of strategy D.

The families which appear in the items retrieved based on

dðĝgni ; ĝgnjÞ are collected without duplicates in a set Sij . One gets

three such sets S12, S23 and S31. Now, the vector ĝgn1
is

supported by families common to S12 and S31, i.e. by those in S1

= S31 \ S12 . Similarly, S2 = S12 \ S23 and S3 = S23 \ S31 support

ĝgn2
and ĝgn3

, respectively. Each element of the set Si casts a vote

for ĝgni , i.e. for each f in Si , the value of V(ni, f) is increased by 1.

As in A, one ultimately gets the resulting accumulator table

V(n, f). For a given n, the larger the number V(n, f), the larger

the probability that ĝgn matches a vector from the f th family.

The final stage is the same as in the case of strategy A. Strategy

D is controlled by the same parameters as strategy A.
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