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The Kossel diffraction technique is well suited for investigating crystal lattices.

Progress in digital recording of images opens the opportunity for simplification

and improvement of the examination of Kossel patterns. Such patterns can be

processed immediately after recording if appropriate computer programs are

available. To provide such a tool, a new Windows-based software for computer-

assisted analysis of Kossel patterns has been developed. With its easy-to-operate

user interface, the program is intended to facilitate refinement of lattice

parameters and determination of elastic strains. The refinement is based on

matching experimental and geometrically simulated patterns, whereas the strain

is obtained by matching Kossel line profiles in similar experimental patterns. The

software is capable of simultaneous handling of multiple patterns.

1. Introduction

Kossel diffraction with patterns produced by diverging X-rays

is widely known, but this remarkable method of studying

crystals is rather rarely used compared to other X-ray tech-

niques. There are a number of different ways of generating

Kossel-type patterns, and a variety of experimental setups and

pattern acquisition geometries utilizing divergent X-rays. In

conventional Kossel diffraction, atoms are excited by a

focused electron beam of suitable energy, and the X-ray

sources are inside the investigated crystal (Kossel et al., 1935).

In the closely related pseudo-Kossel technique, divergent

X-rays are generated outside the crystal near its surface in

(usually, a surface-deposited layer of) a different material

(Lonsdale, 1947). Besides atom excitation by electrons, X-ray

Kossel patterns were also obtained using excitation by protons

(Geist & Flagmeyer, 1974), synchrotron radiation (Ullrich et

al., 1994; Glazer et al., 2004) or lower-energy photons (e.g.

Despujols & Jordi, 1969; Langer et al., 2005). Other related

methods include that of Determann (1937), in which hard

X-ray (Kikuchi-like) patterns arise owing to electron-gener-

ated Bremsstrahlung with a narrow spectrum, or the ‘X-ray

rotation–tilt’ technique (Linnik, 1930; Bauch et al., 2000), in

which a rigidly fixed specimen and detector are simultaneously

rotated around a sample point with respect to a stationary

X-ray source. For reviews of these methods, the interested

reader is referred to Langer (2004) and Lider (2011).

Our focus below will be on the conventional Kossel tech-

nique. An electron-excited Kossel diffraction pattern is built

of a background of Bremsstrahlung and lines of characteristic

radiation. With a planar detector, the lines have the form of

intersecting conic sections. As the locations of the Kossel lines

depend on the crystal lattice, the main application of Kossel

diffraction is the investigation of lattices. In particular, the
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technique is used for determination of crystal orientations,

refinement of lattice parameters and measurement of residual

strains.

Early implementations of the Kossel technique suffered

from accessibility problems, long exposure times and broad

electron probes (resulting in large X-ray sources and low

spatial resolution). This has changed with the emergence of

electron-probe X-ray microanalysis (EPMA). Applicability of

EPMA to Kossel diffraction was demonstrated at the outset by

its originator (Castaing, 1951). Related to that development

was an upsurge of studies on the Kossel technique and its

applications in the 1960s and 1970s [see the accounts of Tixier

& Waché (1970) and Yakowitz (1973)]. The contemporary

descendant of the Castaing instrument – a scanning electron

microscope (SEM) – allows for convenient observations of

microstructures, and for easy installation of additional devices

(including heating or tensile stages). With a spatial resolution

of a few micrometres, Kossel patterns recorded in a SEM can

be used for studying individual grains in polycrystalline

materials. Besides the Kossel technique, only a few other

methods are suitable for local determination of lattice para-

meters or measurements of third-order (intragranular) resi-

dual stresses. Recent decades brought about another

development: the digital recording of diffraction patterns. The

X-ray films of the past were replaced by phospholuminescent

(imaging) plates and by CCD cameras (Ullrich, 1990; Daebritz

et al., 1999). This was an important step as digital recording

potentially opens the door for automation of pattern analysis.

A SEM equipped with a CCD camera is particularly promising

in this respect, because it is an easily accessible laboratory-

based system, and the images can be processed directly after

recording (Langer et al., 2001; Berveiller et al., 2005). The

anticipated further progress in digital acquisition and digital

image processing is expected to create new opportunities for

Kossel microdiffraction. Surprisingly, little has been done to

facilitate the analysis of digitally recorded Kossel patterns. The

software package that is the subject of this article partly fills

this gap.

The package is called KSLStrain. Its main functions are the

refinement of lattice parameters and the determination of

lattice strain from the geometry of Kossel lines. The data

needed to perform these computations are the diffraction

patterns, the crystal structure with approximate lattice metric,

the radiation wavelength and geometric parameters of the

experimental setup (approximate location of the pattern

center and approximate source-to-detector distance). The

algorithms for the refinement are based on a simple geometric

description of diffraction: lattice parameters are calculated by

matching Kossel lines simulated at Bragg positions to points

marking experimental lines. The strain determination proce-

dure also has purely geometric character, but it relies on

comparing the geometry of similar experimental patterns, and

it is not affected by the complex structure of diffraction lines.

KSLStrain evolved from TEMStrain, a program for analysis

of the central discs of convergent beam electron diffraction

patterns (Morawiec, 2007b), and inherits some strengths and

deficiencies of the latter. Moreover, indexing subroutines were

adapted from a program for indexing of Kikuchi diffraction

patterns (Morawiec, 1999). Some features of the package have

been presented in conference proceedings (Morawiec et al.,

2008; Morawiec, 2014), but these accounts were sketchy.

Below, all the main capabilities and limitations of KSLStrain

are presented. We begin with a description of the geometry of

Kossel lines, the indexing procedure and the methods of

obtaining lattice parameters; this part explains the essence of

the algorithms used in KSLStrain. More details of our parti-

cular implementation are given in x3.

The physical and experimental aspects of Kossel diffraction

are beyond the scope of this article, but for a full picture one

needs to recall that not all crystalline structures give conven-

tional Kossel patterns. To allow the observation of Kossel

lines, the excitation energy must be sufficiently high so that

characteristic X-rays are emitted and, on the other hand, some

interplanar spacings must exceed the half-wavelength of the

X-rays (see below). By Moseley’s law, the excitation energy

of K� lines increases with the atomic number Z as

ðZ � 1Þ2 � 10:2 eV, and the K� wavelength decreases as

ðZ � 1Þ�2 � 121:5 nm. In practice, the above conditions imply

that, to obtain Kossel lines, a crystal must contain (in suffi-

ciently large percent) atoms of an element of the fourth or

higher period of the periodic table, and the voltages of 20, 30

and 40 kV correspond to the upper limits of Z ¼ 45, 55 and 63,

respectively. Thus, the window of applicability of the SEM-

based Kossel technique, although not very wide, covers

numerous materials of practical importance.

2. Geometry of Kossel lines

Relating a crystal lattice to reflections in a Kossel pattern

involves several differently oriented reference frames. The

orientations of Cartesian frames, e.g. those linked to the

specimen, detector and microscope, are described by special

orthogonal matrices. More complicated is the essential link

between reciprocal lattice vectors representing individual

reflections and an external reference frame. Instead of

applying one of numerous conventions, e.g. the B matrix of

Busing & Levy (1967), we prefer a more general approach: Let

ðhklÞ be the Miller indices of a plane in a direct lattice based

on vectors ða; b; cÞ ¼ ða1; a2; a3Þ. The coordinates of the

corresponding reciprocal lattice vector in a Cartesian coordi-

nate system based on vectors ei (i ¼ 1; 2; 3) are entries of the

one-column matrix

h ¼ A�1 ½h; k; l�T; ð1Þ

where the matrix A is defined by Aij ¼ ai � ej, i.e. Aij is the jth

Cartesian component of the ith vector of the lattice basis.

2.1. Plotting a Kossel pattern

There are numerous papers describing algorithms and

computer programs for geometric plotting of Kossel lines (e.g.

Morris, 1968; Bomback & Thomas, 1971; Ullrich et al., 1972;

Alex, 1974; Pirouz & Boswarva, 1974; Zhang et al., 1989;

Weber, 1997; Langer et al., 1999). Although the algebraic

computer programs
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characterization of Kossel conics is elementary, it is frequently

given using complicated expressions. For this reason and for

completeness, we include a simple vectorial description.

The Kossel patterns belong to a larger class that Cowley

(1995) named K-line diffraction patterns. The geometry of K-

lines follows from the rules of elastic scattering of mono-

chromatic convergent beams. Formally, this geometry is based

on the assumption that the wavevectors k0 of the convergent

incident beams have arbitrary directions, but their magnitude

is fixed. With individual reflections enumerated by nodes of

the crystal reciprocal lattice, the wavevector k of a reflection

corresponding to the node h is determined by the Laue

equation k� k0 ¼ h and the condition of energy conservation

k2 ¼ k2
0 ¼ 1=�2. These relationships imply the already

mentioned basic restriction for crystal diffraction: peaks may

arise only for reciprocal lattice vectors satisfying the inequality

jhj ¼ jk� k0j � jkj þ jk0j ¼ 2=�, i.e. to observe a reflection,

the interplanar spacing d ¼ 1=jhj must exceed �=2. The

formula describing K-lines can be easily obtained by noting

that h and kþ k0 are perpendicular: h � ðkþ k0Þ ¼
ðk� k0Þ � ðkþ k0Þ ¼ k2 � k2

0 ¼ 0. Elimination of k0 from

h � ðkþ k0Þ ¼ 0 by the Laue equation gives the relationship

h � ðk� h=2Þ ¼ 0; ð2Þ

which links the wavevector k to the reciprocal lattice vector h

without involvement of the arbitrarily directed k0. Reflections

in a K-line diffraction pattern have wavevectors k satisfying

equation (2) and k2 ¼ 1=�2. For a given nonzero h, these

equations are solved by k ¼ h=2 þ l, where l is perpendicular

to h and l2 ¼ 1=�2 � ðh=2Þ2. Having one vector l ¼ l0 of this

kind, all wavevectors linked to the reciprocal lattice vector h

are given by the parametric equation

k ¼ h=2 þ cosð�Þ l0 þ sinð�Þ l0 � h=jhj; ð3Þ
with � being the parameter. These wavevectors lie on a cone

with an axis along h. By equation (2), the cosine of the angle

between k and h is ðk=jkjÞ � ðh=jhjÞ ¼ �=ð2dÞ, and thus the

semi-apex angle of the Kossel cone is complementary to the

Bragg angle. An intersection of such cones by a plane

(detector) leads to Kossel conics (on a diffraction pattern) (see

Fig. 1).

The position of a flat detector is determined by a vector L

perpendicular to its plane and having a magnitude equal to the

distance between the X-ray source and the detector. With the

initial point of L at the source, its endpoint on the detector

plane is referred to as the pattern center. The observable trace

of the reflection linked to the wavevector k is at

q ¼ Lþ L� ðk� LÞ = ðk � LÞ: ð4Þ
The vector p ¼ q� L with the origin at the pattern center has

its endpoint on the Kossel line.

Summarizing, the geometry of the K-lines is determined by

L, �, A and a list of ðhklÞ planes. A routine for plotting K-line

patterns, if written in a high-level programming language,

consists of just a few lines expressing equations (1), (3) and (4)

plus some code for determining l0 and inputing data.

2.2. Obtaining lattice data from Kossel lines

Even within the geometric realm, the problems of orienta-

tion determination, lattice parameter refinement or strain

measurement are much more involved than pattern simula-

tion. Numerous procedures for solving these issues have been

devised: from simple charts (e.g. Rowlands & Bevis, 1968;

Ferran & Wood, 1970) and other geometrical methods (e.g.

Peters & Oglivie, 1965), to more sophisticated algorithms and

computer programs (e.g. Heise, 1962; Gielen et al., 1965;

Pietrokowsky, 1966; Ryder et al., 1967; Bevis & Swindells,

1967; Morris, 1968; Newman & Shrier, 1970; Fisher & Harris,

1970; Tixier & Waché, 1970; Lutts & Gielen, 1971; Harris &

Kirkham, 1971; Harris, 1975; Aristov & Shmytko, 1978). These

programs, however, do not take advantage of digital recording

of Kossel patterns. Moreover, most of the older approaches

are not suitable for analyzing patterns originating from arbi-

trarily oriented crystallites in polycrystals because they

frequently rely on some specific features (e.g. points at which

more than two Kossel lines intersect each other, points of line

tangency or particular ‘lenses’), which may be absent or visible

only for special crystal orientations.

Analyzing individual grains in polycrystals requires a

general approach: the software must allow for arbitrary

orientations and make use of various features of diffraction

patterns. Ideally, one might consider exploiting complete

information via ‘whole pattern fitting’, but using intensities is

difficult because line profiles are complicated (Fig. 2). The

profiles are influenced by a number of physical factors (elec-

tron beam diameter, distribution of electrons in the interac-

tion volume, X-ray absorption, extinction, refraction), the

geometry of the experimental setup (position of the crystal

with respect to that of the detector and with respect to the

computer programs
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Figure 1
Schematic of vectors involved in the geometric description of a Kossel
line. Vectors shown in black (red) are in the direct (reciprocal) space. L is
perpendicular to the detector.
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electron beam) and the digital processing of the pattern

(background subtraction method). It is much simpler to rely

just on the geometry of Kossel lines.

In the purely geometric approach, it is assumed that the

wavelength �, the approximate direct basis ai and the

approximate position of the detector L are known. The

analysis of a pattern begins with an assignment of Miller

indices to particular Kossel lines. The first step towards

indexing is to calculate a single vector h uniquely character-

izing a given Kossel line. This h can be calculated from, say, N

measured pðiÞ vectors (i ¼ 1; . . . ;N), each of them originating

at the pattern center and ending on the line. The following

procedure can be used for that purpose: With the direct space

vector x ¼ h=jhj2, equation (2) can be written in the form

k � x ¼ 1=2. The vector kðiÞ of the wave that arrived at

qðiÞ ¼ pðiÞ þ L is given by kðiÞ ¼ qðiÞ=ð�jqðiÞjÞ. For each of these

kðiÞ vectors, x is expected to satisfy

kðiÞ � x ¼ 1=2: ð5Þ

This is the ith representative of a system of N linear equations

with respect to x. The optimal x is obtained by linear regres-

sion: with noncoplanar kðiÞ, one has x ¼ M�1
P

i k
ðiÞ=2, where

the matrix M is defined by M ¼ P
i k

ðiÞ � kðiÞ and � denotes

the outer product of vectors. Knowing x, one can directly

calculate the corresponding h ¼ x=jxj2. Differently than x,

which is the least-squares solution of equation (5), the above

vector h has no direct interpretation as ‘the best’ approx-

imation to the solution of the system h � ðkðiÞ � h=2Þ ¼ 0, but in

practice this simple method of obtaining the scattering vector

works quite well.

Each conic marked by pðiÞ vectors gives a single scattering

vector. A set of (at least three) scattering vectors can be used

for indexing and to obtain the crystal orientation. This is

performed by matching these vectors to low-index vectors of

the reciprocal lattice. Formally, the problem can be stated as

follows: given two sets, say X and Y, of vectors, determine a

rotation carrying X (experimental scattering vectors) to a

position approximating a subset of Y (theoretical reciprocal

lattice vectors). Solving this problem involves (combinatorial)

assignment and (continuous) alignment (see e.g. Morawiec,

1999, 2015). The assignment corresponds to indexing of

reflections, and the alignment represents fitting of the orien-

tation.

The vectors kðiÞ are also used for refining lattice parameters.

The definition of these vectors implies that they depend on L,

i.e. kðiÞ ¼ kðiÞðLÞ. Moreover, a small homogeneous deformation

F changing a direct space vector a to Fa causes the inverse

change in the reciprocal space, i.e. a given reference reciprocal

lattice vector h is transformed to g ¼ gðh;FÞ ¼ F�1h. The

ideal vectors g and kðiÞ are expected to satisfy equation (2),

that is g � ðkðiÞ � g=2Þ ¼ 0. Unknown parameters can be

determined by minimizing deviations from these equalities.

The procedure of obtaining F and L by minimization of the

sum

f ðF;LÞ ¼ P
g � ðkðiÞ � g=2Þ� �2 ð6Þ

is referred to as a ‘K-line equation based scheme’ or KLEBS

(Morawiec, 2007a); the summation above is over all marking

points of all used conics. The (nine) entries of F determine the

(six) strain tensor components and (three) parameters needed

for correcting the crystal orientation; the strain tensor is used

for calculating the lattice parameters.

3. KSLStrain

KSLStrain was created to facilitate the analysis of Kossel

diffraction patterns. Operation of the package is controlled via

a graphical user interface, which simplifies the input and

presents results in a convenient form. Besides the simple

geometric simulation of Kossel patterns, the program is

capable of orientation determination, lattice parameter

refinement and strain determination. Neither the refinement

nor strain determination requires special crystal orientations.

The reliability of the results can be verified by comparing

outputs of different strategies available in the package.

As for the limiting factors, the essential computations are

based on the geometric theory of diffraction under the

assumption of a point-like radiation source, i.e. all Kossel

cones are assumed to have a common apex. The fine structure

of the Kossel lines is used only in profile-based strain deter-

mination, when similar patterns are compared. It is also

assumed that components of the strain tensor " and other

fitted parameters are small; formally, this is related to appli-

cation of linear approximations of the type ðI þ "Þ�1 ’ ðI � "Þ,

computer programs
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Figure 2
Fragments of Kossel lines of ferrite and their profiles. The reflections are
(110) (a) and (112) (b). The profile in (a) demonstrates the bright–dark
structure of the line. In (b), there are separate peaks of the K� doublet.
The profiles were averaged over 0.8	 long segments of Kossel lines. The
discs are on the convex sides of the lines. The above patterns and those of
Figs. 3 and 5 are courtesy of D. Bouscaud (LEM3).
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where I is the identity transformation. Moreover, since line

curvatures are used, the program will fail if the lines are nearly

straight, i.e. when the source-to-detector distance is large

compared to the pattern diameter, and in the case of patterns

obtained with short wavelengths and having geometry similar

to that of Kikuchi patterns.

3.1. Geometric simulation of Kossel patterns

The patterns of Kossel lines are drawn using equations (1),

(3) and (4), the user-provided crystal structure and wave-

length, and the actual crystal orientation and L. The L vector

is specified in the Cartesian reference frame linked to the

detector (with the third axis of the frame perpendicular to the

detector plane) by providing the sample-to-detector distance

and the coordinates of the pattern center on the detector. The

total number of reflections in a geometric simulation of a

pattern cannot be larger than 256. Decisions about absences of

particular reflections are based on their kinematic intensities

and user-provided limits on the largest allowed Miller index

and/or the lowest allowed (relative) intensity. The intensities

are computed from the X-ray atomic form factors of Waas-

maier & Kirfel (1995). For convenience, some parameters of

the simulation (orientation parameters, source-to-detector

distance) can be modified not only by inputting their values

but also by a mouse click. One can also directly display the

impact of a given strain tensor component on the geometry of

Kossel lines.

3.2. Orientation determination

All steps of pattern interpretation (i.e. those beyond the

geometric simulation) rely on the locations of markers pðiÞ

indicating the positions of Kossel lines (see Fig. 3). A marking

disc is added by a mouse click. The number of markers per line

must be in the range of 3–64; a typical number is about ten.

The number of lines marked on a given pattern cannot be

larger than 32. The locations of markers can be manually

corrected using local profiles of the lines. The profiles are

smoothed by averaging over short segments of Kossel lines.

With a tool showing a profile, a marker can be moved in steps

of 1/10 of a pixel (Fig. 4). The coherency of line marking can be

verified by checking the distance of a given marker from a true

conic section obtained from all markers of the line (or all other

markers of the line).

On the basis of pðiÞ, � and L, the scattering vectors h are

obtained using the system of equations (5). The orientation is

calculated by matching these vectors to vectors of the reci-

procal lattice corresponding to the user-provided crystal

structure. The actual indexing is performed by an adapted

version of a program designed for obtaining crystal orienta-

tions from Kikuchi patterns (Morawiec, 1999). For this reason,

the matching procedure involves a redundant step: both the

experimental scattering vectors and the reciprocal lattice

vectors are normalized to unity. In consequence, the indexing

relies on angles between vectors, and vector magnitudes do

not play any role. The strategy used for indexing is a form of

computer programs
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Figure 3
(a) Example Kossel diffraction pattern of CuBeAl alloy. (b) The same
pattern with markers (white discs) of Kossel lines. The approximate
location of the pattern center and one of the pðiÞ vectors are additionally
drawn (in yellow).

Figure 4
Graphic tools for manual positioning of markers in refinement (a) and for
matching profiles in strain determination (b). The profiles are inverted.
The black dashes at the top are separated by one pixel, i.e. the complete
length of each profile is 20 pixels. The blue elements can be moved to
select the point on the Kossel line.
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generalized Hough transform. With small groups of the scat-

tering and reciprocal lattice vectors, the comparison of angles

between the vectors indicates candidate orientations. These

orientations are accumulated in the space of orientation

parameters. The total accumulation near the actual crystal

orientation is generally larger than in other parts of the space,

and this enables the identification of the crystal orientation

and the assignment of Miller indices. The alignment accom-

panying the indexing involves calculation of the best rotation

relating two sets of vectors and the mean orientation (Mora-

wiec, 1998), but this part of the software is separate from the

KLEBS-based optimization of orientation parameters in

refinement. In practice, as all other parameters are quite

accurate, the performance of the indexing routine is deter-

mined by the accuracy of the position of the X-ray source with

respect to the detector (L).

3.3. Refinement of lattice metric

The refinement is based on matching experimental Kossel

lines (represented by vectors pðiÞ) to geometrically simulated

conics. Besides the lattice parameters, the parameters of

crystal orientation, the sample-to-detector distances and the

locations of the pattern centers can also be refined. More

precisely, the operator decides about fitting particular

components of the tensor " (= symmetric part of F � I),

sample-to-detector distances and pattern centers, whereas

orientation parameters are always fitted. The program is

capable of simultaneous handling of multiple (up to ten)

patterns; all these patterns are expected to correspond to the

same set of lattice parameters, whereas the orientations and L

vectors are fitted separately for each pattern. Thus, the

number of optimization parameters can reach 66

[¼ 6 þ 10 � ð3 þ 3Þ]. In the simplest and usual case, when just

one pattern is processed, the number of parameters does not

exceed 12.

The current version of the program uses two different

optimization procedures: the aforementioned KLEBS and a

second, less robust approach, in which distances between

intersections of Kossel lines are fitted. The KLEBS method is

implemented in two versions: the one described above, i.e. the

minimization of the function f given by equation (6), and

another one minimizing f linearized with respect to small

optimization parameters (Morawiec, 2007a). In all cases, the

search for minima is carried out using the MINUIT optimi-

zation package (James, 1998).

Crucial for the quality of the refinement is the question of

whether the optimization problem is well conditioned, i.e. if it

has a unique solution, and if the solution is stable with respect

to inaccurate (experimental) input data. There are two points

of concern. First, the wavelength is correlated to a combina-

tion of lattice parameters: the change of � by the factor � to ��
has the same effect on the geometry of the Kossel lines as the

deformation F ¼ ��1I applied to the direct lattice in a

Cartesian reference frame. Therefore, the wavelength cannot

be fitted together with the complete lattice metric. In

KSLStrain, the user-provided wavelength is assumed to be

exact and it is not an optimization parameter; if it needs to be

refined, this can be done via the equivalence between �� and

F ¼ ��1I. Second, as the impact of a small rotation of a crystal

about an axis perpendicular to L is nearly the same as that of a

small shift of the pattern center, there is always a strong

correlation between the coordinates of the pattern center and

the two parameters of crystal orientation. This is of secondary

importance if one looks for lattice parameters or the strain

tensor, when the pattern center and orientation parameters

are only auxiliary variables. In typical geometry, with the

detector diameter comparable to jLj, no other undetectable

combinations of the optimization parameters were observed;

this was reflected by the absolute values of the correlation

coefficients which, in cases other than those considered above,

were usually below 0.5, and they rarely exceeded 0.7.

The search for an optimal solution can be complicated by

trapping at local minima. For better control of the optimiza-

tion process, KSLStrain allows for display of one-dimensional

sections through the objective function. With the patterns

considered so far, we have not encountered local minima on

these sections, but it must be noted that the KLEBS procedure

and single patterns (i.e. up to 12 optimization parameters)

have mainly been used.

Assuming that the diffraction patterns are free of distor-

tions, the resolution of the refinement of lattice parameters is

limited by the widths of the Kossel lines. Some empirical rules

for selection of the positions of line markers are given by

Bouscaud, Morawiec et al. (2014b). The actual numbers

describing the resolution also depend very much on the

material (presence of high-angle reflections) and experimental

conditions (L and the size of the detector). Results of example

resolution tests were given by Bouscaud and co-workers

(Berveiller et al., 2014; Bouscaud, Morawiec et al., 2014); e.g.

for an Ni alloy investigated using the experimental setup

described there, the precision of the components of the

complete strain tensor was estimated to reach 2 � 10�4 if more

than ten Kossel conics per pattern were matched.

3.4. Strain determination

If one has experimental diffraction patterns originating

from lattices with similar orientations, the strain can be

calculated from the differences between those patterns. The

strain determination relies on the lattice parameter refine-

ment, and the resulting strains are relative to the approxi-

mately known reference lattice. In other words, in strain

determination, lattice parameters obtained from experimental

patterns are referred to parameters obtained from other

experimental patterns, whereas in mere refinement, absolute

lattice parameters are obtained from the strain which needs to

be imposed on the user-specified reference lattice, so the

simulated line patterns match markers on experimental

patterns. Crucial for the accuracy of strain determination is

that the locations of the markers of Kossel lines in the

investigated pattern are determined precisely using line

profiles collected from the reference pattern. (In refinement,

to place a marker, an operator must work out which location

computer programs

J. Appl. Cryst. (2016). 49, 322–329 A. Morawiec � Refinement and strain determination using Kossel diffraction patterns 327
electronic reprint



on the profile actually corresponds to the Bragg condition.)

The complete procedure for strain determination is as follows:

(1) The reference lattice parameters are refined using the

experimental reference patterns.

(2) The reference lattice parameters and (reference)

profiles corresponding to these parameters are saved.

(3) The saved reference profiles are used to put markers of

lines in the investigated patterns.

(4) These new positions are then used to refine lattice

parameters corresponding to the investigated patterns and to

obtain the lattice strain with respect to the reference lattice

parameters. See Fig. 5.

KSLStrain facilitates fitting intensity profiles along direc-

tions perpendicular to Kossel lines. In the second step of the

above procedure, the marking points can be selected auto-

matically. With this approach, some of these points may turn

out to be unsuitable (e.g. markers at low-angle intersections of

Kossel lines) and they must be manually removed. The third

step can also be done semi-automatically: the software puts

the markers at locations giving the largest correlation coeffi-

cient between the reference profiles and the profiles in the

investigated pattern, but the results of this procedure must be

checked by the operator and, if needed, individual profiles can

be matched manually.

Tests on simulated patterns indicate that the resolution of

the profile-based approach is considerably better than that of

the geometry-based refinement (Morawiec, 2014). As in the

case of the refinement, it depends on the material and

experimental conditions.

Note that the above profile-based approach is similar to

strain determination by digital image correlation. The differ-

ence is that no direct correlation of Kossel patterns is possible

as a lattice strain moves particular points of Kossel lines in a

complicated manner. One could envisage determination of

strain by using conventional image correlation applied to the

Hough transforms of Kossel patterns, but at present this seems

to be computationally too costly.

3.5. Language, platform, availability and documentation

The KSLStrain program was written in Fortran90 (essential

computations) and VB6 (user interface). It runs on 32 bit

personal computers under Microsoft Windows (XP or later)

operating systems, with the Windows display-scale variable set

to default 96 d.p.i. (‘Small icons’ setting). The input diffraction

patterns must be in the form of 8 or 24 bit grayscale bitmap

files of dimensions not smaller than 512 � 512 pixels and of a

width (in pixels) divisible by 4. A 4.6 MB self-extracting

executable file can be downloaded from http://imim.pl/

personal/adam.morawiec/A_Morawiec_Web_Page/downloads.

html. The documentation is limited to HTML-formatted help

files.

4. Concluding remarks

In response to progress in digital recording of Kossel

diffraction images a new software package for analysis of such

patterns has been developed. Its main applications are the

refinement of lattice parameters and determination of lattice

strains. The refinement is based purely on the geometry of

Kossel lines, and comparison of line profiles is used to calcu-

late strain.

Prospects for advancement of the SEM-based Kossel

technique depend on the automation of pattern acquisition

and on further automation of pattern analysis. The latter step

requires a self-explanatory and easy-to-manipulate user

interface minimizing the input an operator needs to provide,

and KSLStrain partly resolves the issue. For true automation,

however, additional software for effective and accurate

detection of the conics would be needed, and progress in this

matter has been slow.1 As of today, we believe that to create a

program accurately detecting most of the conics, one will have

to include information about the relationships between

particular scattering vectors. This means in practice that conic

detection will be inherently combined with orientation

determination. A more complete program might also be

capable of simulating profiles of Kossel lines on the basis of

physically justified arguments. Such simulation would expand

the list of input parameters, but assuming it provides profiles

similar to those observed experimentally, this addition may

considerably improve the accuracy of lattice parameter

refinement.

A relatively small fraction of published software is directly

used or adapted, as other researchers look for different

computer programs
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Figure 5
Schematic of the strain determination procedure. The lattice parameter
refinement is limited by the accuracy of positioning the line markers as in
(a). The reference (red) objects in (b) originate from (a). In strain
determination, the markers in the investigated pattern (b) are positioned
using the profiles collected from the reference pattern (a).

1 Early in the development of KSLStrain, an attempt was made to add
automatic positioning of marking points (using a generalized Hough transform
under the assumption that approximate L and magnitudes jhj are known).
That software turned out to be slow and, more importantly, the detection was
inaccurate so manual verification and correction of markers was necessary.
Similar speed and accuracy were reached in a recent attempt made
independently by Kudłacz (2014). In the meantime, accounts with opposite,
rather optimistic, conclusions have been published by Maurice & Fortunier
(2008) and Bauch et al. (2011), but we are not aware of any applications of
these programs.
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functionalities or prefer to rely on their own creations.

However, newer programs do not only duplicate some

features of their predecessors. Usually, they use improved

algorithms, they have more capabilities and, ultimately, they

become parts of full-scale, well maintained, user-friendly

systems. KSLStrain – although complete in its form – should

be seen as a step toward more sophisticated and more auto-

matic analysis of Kossel diffraction patterns.
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