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EffEcts of transition MEtal carbidEs on MicrostructurE and MEchanical ProPErtiEs of  
ultrafinE tungstEn carbidE Via sPark PlasMa sintEring

WC-Co cemented carbides were consolidated using spark plasma sintering in the temperature 1400°C with transition metal 
carbides addition. The densification depended on exponentially as a function of sintering exponent. Moreover, the secondary (M, W)
Cx phases were formed at the grain boundaries of WC basal facet. Corresponded, to increase the basal facets lead to the plastic 
deformation and oriented grain growth. A higher hardness was correlated with their grain size and lattice strain. We suggest that 
this is due to the formation energy of (M, W)Cx attributed to inhibit the grain growth and separates the WC/Co interface.
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1. introduction

Carbides of transition metals are used widely in manu-
facturing structures and tool materials that can operate at high 
temperatures, in aggressive media, and heavy loads [1]. However, 
using WC-cemented carbide as a cutting tool material exhib-
its vulnerable properties such as brittleness and sinterability. 
Therefore, Co is added between the WC particles as a binder, 
which contributes to wettability and ductility. The Co decreases 
the wear and corrosion resistance of the WC matrix, which is 
caused by abnormal grain growth of the cemented carbide and 
electrochemical elution of Co [2]. 

Methods such as rapid sintering (spark plasma sintering; 
SPS) and adding of inhibitors can improve the aforementioned 
properties that control the finer grain size in the WC-cemented 
carbide to be less than 0.5 µm. Thus, the mechanism of grain 
growth inhibition was essential for improving the mechanical 
properties of the WC-cemented carbide, in which the transition 
metal carbides (MCs) (such as TiC, VC, Cr3C2, ZrC, TaC, and 
NbC) act as inhibitors by forming a secondary mixed cubic 
carbide phase, that is, (M, W)Cx. The (M, W)Cx stability is cor-
related with the mechanical properties of the cemented carbide, 
wherein the influence of the (M, W)Cx on the interactions for 
crack-microstructure is effected of ggI on the interface struc-
tures of the WC/Co [3]. 

According to previous literature, the effect of adding MCs 
can be classified as follows: (i) TiC increase the wear resistance 
by diffusive wear and chemical interaction [4]. (ii) TaC and ZrC 
are hardened to interfere with plastic deformation, whereas high 
hardness is observed at high temperatures [4]. (iii) NbC reduces 
the oxidation rate via the passivation effect [5]. (iv) VC and 
Cr3Cr2 are hardened to inhibit grain growth by high solubility 
in the binder phase [5].

This study designs strengthened WC-Co-based hard ma-
terials containing MCs via SPS. Herein, the WC-6Co-2.5MCs 
sintered compacts are consolidated during rapid densification 
with the inhibition of particle growth. Notably, the structural 
evolution, sintering behavior, microstructure, and mechanical 
properties were investigated according to the effect of ggIs

2. Experimental

WC (≤0.5 µm, >99.9%, Taegutac Ltd.), Co (≤10.0 µm, 
>99.8%, Alfa Aesar), Cr3C2 (≤10.0 µm, >99.5%, Alfa Aesar), 
NbC (≤10.0 µm, >99.0%, Kojundo Chemical), TaC (≤44.0 µm, 
>99.5%, Alfa Aesar), TiC (≤5.0 µm, >99.5%, Alfa Aesar), VC 
(≤2.0 µm, >99.5%, Alfa Aesar), and ZrC (≤10.0 µm, >99.5%, 
Alfa Aesar) powders were used as raw materials. These powders 
were synthesized via horizontal ball milling with Zro2 balls at 
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a ball-to-powder ratio of 10:1. The powder mixture was milled 
for 12 h in ethanol media at 250 rpm. The nominal compositions 
of the powders were WC-6Co-2.5mCs (wt.%).

The milled powders were consolidated via sps (sps 9.40 
Mk-III, Sumitomo Heavy Industries) at a sintering tempera-
ture 1400°C, heating rate of 60°C/min, and under a pressure 
of 60 MPa. The sintering behavior during densification and 
consolidation was investigated according to the macroscopic 
shrinkage strain in eq. (1). 

 
2

3
0

0

 , 
2

1

m
m G
s S

L X
L D L

L


 

        
    

 
 

  (1)

Where, εs is the shrinkage strain, m is the sintering exponent, 
ΔL is the change in shrinkage displacement, L0 is the original 
length of the green body, ρS is the sintered relative density, ρG is 
the density of the green body, and (X/2D) is the neck-to-particle 
diameter ratio of the sintered particles. 

Structural evolution of the milled powders and sintered 
compacts was characterized via X-ray diffraction (XrD, 
pIXCeL 1d deTeCTor, panalytical) with CuKα radiation 
(λ = 0.154 nm). The average crystallite size and microstrain were 
calculated using a Willamson-Hall plot in eq. (2). 
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Where, D is the crystallite size, k is scherrer constant (0.9) with 
shape factor, and λ is the wavelength of CuKα radiation. Instru-
mental broadening is expressed as βhkl of the corrected value 
derived using the micro strain (ε). In addition, the WC grain 
size was obtained from Image-Pro software (6.0 ver., Media 
Cybernetics) from the Fe-SeM images by measuring the linear 
intercept length. 

The microstructure of the sintered compacts was observed 
via scanning electron microscopy (SeM, JSM-7001F, JeoL), 
and their mechanical properties were measured using a Vickers 
hardness tester (HMV-g, Shimadzu) with a load of 20 kg·f ap-
plied for 15s. The hardness is calculated with the eq. (3). 

 2v
kPH
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   (3)

Where, k is a constant (= 1.89 × 105) depending on the indenter 
geometry and on the units, P is the applied force (in N) and d 
the diagonal length of the indentation. 

In addition, the fracture toughness (KIC) value obtained by 
the Antis formula [6] is expressed using eq. (4).

 
1/2

3/20.016 /IC
EK P C

Hv
   
 

  (4)

Where, E is the elastic modulus, Hv is the hardness, P is the ap-
plied load, and C is the length of crack propagation.

3. results and discussion

XrD patterns of powders and sintered compacts were 
showed Figure 1. The (M, W)Cx phases were observed at the 
basal facets of the cemented carbide, that is, the (001) plane. The 
increase in basal facets could lead to the plastic deformation of 
the cemented carbide [1], which causes preferentially oriented 
grain growth. In the specimen containing the Cr3C2 (Fig.  1(b)-v) 
and NbC (Fig. 1(b)-vi), the peak intensity of the basal facets 
was relatively high; therefore, the brittle to ductile transition 
in the cemented carbide [7] was increased. Contrarily, the pre-
cipitation of free carbon (graphite) is shown in Fig. 1(b)-iii, to 
which VC was added. This is because the W and carbon atoms 
of (V, W)Cx at the interface between WC/Co hardly diffused 
into the Co intergranular [8] owing to the difference in carbon 
activity. Consequently, (M, W)Cx could cause grain refinement 
by decreasing the interfacial resistance along with the instability 
of the interface.

Fig. 1. XrD patterns of WC-6Co-2.5MCs sintered-compacts: (a) 2.5TiC, 
(b) 2.5TaC, (c) 2.5VC, (d) 2.5ZrC, (d) Cr3C2, and (e) 2.5NbC

The densification profile and sintering kinetics of sin-
tered compacts are shown in Figure 2. The relative densities 
of all compacts were consolidated to be above 99.0% with the 
measured macroscopic shrinkage profile, that is, 6Co: 100.0%, 
2.5TiC: 100%, 2.5Cr3C2: 99.8%, 2.5VC: 99.6%, 2.5TaC: 99.3%, 
2.5NbC: 99.1%, and 2.5ZrC: 99.0%. The high densification was 
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confirmed by boosting the atomic diffusion of the WC particles 
by Joule heat at the particle to particle contact point by pulsed 
DC current during the rapid sintering. In addition, the densifica-
tion strain for the sintering exponent for the WC-6Co-2.5MCs 
in the temperature range (900~1200)°C, where rapid shrinkage 
proceeds, is shown in Fig. 2(b). That is, the high εs increases 
exponentially as a function of m. 

 
  

Fig. 2. Schematic representation of SPS process with WC-6Co-2.5MCs 
sintered-compacts: (a) shrinkage displacement and relative density 
profile and (b) densification strain-sintering time curve in shrinkage 
stage, i.e., at the temperature range of 900~1200℃

Microstructures of sintered compacts with their crack 
propagation and indentation are shown in Figure 3. They con-
sists of the WC-6Co-2.5MCs in angular WC grains (gray color) 
and Co-binder (light gray), which are embedded in the rounded 
(M, W)Cx phase (light gray). The high concentration of (M, W)
Cx in the TaC (fig. 3(b), −2.426 eV) and the Cr3C2 (Fig. 3(e), 
−2.778 eV) was attributed to their formation energies [9] of 
the cubic carbides. For instance, WCx: −2.167 eV, (W, V)Cx: 
−1.576 eV, (W, Ti)Cx: 0.282 eV, (W, Nb)Cx: −1.481 eV, and (W, 
Zr)Cx: −1.528 eV. moreover, owing to the low stability in the Co-
binder at high carbon activities, they cause instability of the in-
terface, and then segregate as agglomerates rather than diffusing 
to grain boundaries. However, the stabilized cubic carbides (Fig. 
3(a) and 3(c)) not only inhibits the growth of the WC grain but 
also separates the bonding of the WC/Co interface, which causes 
a decrease in the resistance against intergranular fracture [9]. 

Mechanical and structural properties of the WC-6Co-
2.5MCs sintered compacts are summarized in Table 1. The 
average hardness increased from 17.2±0.3 to 22.3±0.3 gPa, 
whereas the kIC decreased from 12.3±0.4 to 4.3±0.5 MPa·m1/2. 
The effect of inhibiting grain growth was most effective when 
the VC was added (0.80 to 0.52 µm) with a highly internal strain 
(ε = 0.48) of the lattice. That is, the decrease in the lattice con-
stant (2.837 to 2.821 Å) could be attributed to a series of solid 
solution strengthening. Therefore, an adequate phase constitution 
between the carbon activity and stability of the cubic carbide can 
lead to both strengthening effects (H and kIC). It can be observed 
in the properties of the WC-6Co-2.5TaC, that is, 20.1±0.2 gPa 

and 6.4±0.4 MPa·m1/2.

Fig. 3. Microstructures of WC-6Co-2.5MCs sintered-compacts with 
their crack propagations: (i) 2.5TiC, (ii) 2.5TaC, (iii) 2.5VC, (iv) 2.5ZrC, 
(v) 2.5Cr3C2, and (vi) 2.5NbC
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4. conclusions

effect of adding MCs that cause the grain refining behavior 
of the WC-Co cemented carbide was discussed. SPS enhanced 
the sintering kinetics and maintained the fine grains. Phase con-
stitution and microstructure distribution of the (M, W)Cx cubic 
carbides were dominated by the behavior of the WC basal facet 
and carbon activity on the Co interface, which was similar to 
their formation energy. Mechanical properties were characterized 
by considering the grain size and lattice strain, which exhibited 
the highest hardness value (22.3±0.3 gPa) on adding by the VC 
due to the solid solution strengthening.
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TABLe 1

Comparison of the mechanical and structural properties of the WC-6Co and the WC-6Co-2.5MCs sintered compacts

Wc-6co-2.5Mcs

Properties
Vickers 

hardness 
(gPa)

Elastic 
modulus (gPa)

fracture 
toughness 

(MPa·m1/2)

average 
crystallite size 

(nm)

average grain 
size (μm)

lattice 
constant 

(W,M)cx (Å)

Mircostrain 
(%)

WC-6Co 17.2±0.3 666.8 12.3±0.4 44.8 0.80 2.837 0.18
WC-6Co-2.5Cr3C2 16.2±0.1 655.0 10.2±0.3 33.0 0.71 2.837 0.25
WC-6Co-2.5NbC 18.1±0.1 656.2 8.1±0.3 39.2 0.74 2.838 0.24
WC-6Co-2.5ZrC 18.9±0.3 655.8 6.8±0.5 28.6 0.69 2.823 0.34
WC-6Co-2.5TiC 19.6±0.3 655.4 4.8±0.5 25.7 0.64 2.833 0.36
WC-6Co-2.5TaC 20.1±0.2 653.7 6.4±0.4 24.4 0.58 2.817 0.39
WC-6Co-2.5VC 22.3±0.3 655.1 4.3±0.5 17.8 0.52 2.821 0.48
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