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METODY OPTYMALIZACYJNE W MODELOWANIU WŁASNOŚCI MECHANICZNYCH BLACH GRUBYCH

The paper is devoted to an optimization approach to a problem of statistical modeling of mechanical properties of heavy
steel plates during a real industrial manufacturing process. The approach enables the manufacturer to attain a specific set of
the final product properties by optimizing the alloying composition within the grade specifications. Because this composition
has to stay in the agreement with earlier indicated specifications, it leads to the large system of linear constraints, and the
problem itself can be expressed in the form of linear programming (LP) task. It turns out however, that certain of the constraints
contain the coefficients which have to be estimated on the base of the data gathered in the production process and as such they
are uncertain. Consequently, the initial optimization task should be modeled as so-called Chance Constrained Programming
problem (CCP), which is a special class within the stochastic programming problems. The paper presents mathematical models
of the optimization problem that result from both approaches and indicates differences which are important for the decision
makers in the production practice. Some examples illustrating the differences in solutions resulting from LP and CCP models are
presented as well. Although the statistical analysis presented in this paper is based on the data gathered in the ISD Czestochowa
Steelworks, the proposed approach can be adopted in any other process of steel production.
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Praca poświęcona jest optymalizacyjnemu podejściu do modelowania wybranych własności mechanicznych blach grubych
w trakcie rzeczywistego procesu produkcyjnego. Proponowane podejście umożliwia producentowi uzyskanie ustalonego zbioru
własności blach stalowych z jednoczesną optymalizacją ich składu chemicznego w zakresie określonym poprzez normy defi-
niujące dany gatunek. Ponieważ ów skład musi pozostawać w zgodzie z wcześniej wskazanymi w zamówieniu specyfikacjami
prowadzi to do dużego układu liniowych ograniczeń, a sam problem można wyrazić w postaci zadania programowani liniowego.
W praktyce okazuje się, że pewne z tych ograniczeń zawierają współczynniki, które muszą być oszacowane na podstawie danych
zebranych w procesie produkcyjnym i jako takie ich wartości są niepewne. W konsekwencji wyjściowy problem powinien zostać
sformułowany jako zadanie programowania stochastycznego.

W pracy przedstawia się modele optymalizacyjne wynikające z obu podejść i wskazuje na różnice ważne z punktu widzenia
podejmowania decyzji w praktyce produkcyjnej. Prezentowane są również przykłady ilustrujące różnice w rozwiązaniach
uzyskiwanych z pomocą tych dwóch modeli. Chociaż analiza statystyczna przedstawiona w pracy oparta jest na danych zebranych
w ISD Huta Częstochowa, to proponowane podejście może być zaadaptowane w dowolnym innym procesie produkcji stali.

1. Introduction

Contemporary global steel industry is facing signif-
icant pressure to achieve operational excellence and im-
prove profitability. Any competitive metallurgical com-
pany should have the ability to allow customers to de-
sign their own alloy and have it melted at cost-effective
prices. Thus manufacturers of the heavy steel plates must
possess proper tools in order to track and control the
production, modify the technology and forecast various
technological features of the final product. Creation of
mathematical models for phenomena occurring during

the technological process is the important stage of the
realization of this goal. These models contribute to the
decrease of general production costs and increase of the
product competitiveness thanks to the control of pro-
duction process and improvement of the final product
quality. It turns out in practice that in order to match the
requirements of the contemporary market such models,
beside the supervisory tasks should also fulfill optimiz-
ing functions. Papers devoted to optimization aspects of
various problems related to the metallurgical industry
appear in the literature more and more often, see e.g.
[1-7], and this paper is also devoted to these class of
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problems. The optimization models which we formu-
late here can be used in the stage of modeling the me-
chanical properties of heavy steel plates during the real
production process. The proposed approach enables the
optimization of chemical composition of the steel alloy
and some technological parameters with the simultane-
ous fulfillment of earlier imposed requirements for final
properties of the product. These requirements usually
result from the steel grade standards but can also be
connected with certain additional requirements imposed
by the customer. All these predefined requirements yield
a set of constraints which should be satisfied by the ac-
ceptable solutions. It turns out that usually these limita-
tions can be expressed through linear functions, and the
problem itself can be formulated in the form of Linear
Programming (LP) model. However, it appears that cer-
tain constraints should be expressed by relations, which
true quantitative nature remains unknown. Especially it
refers to the constraints connected with the final mechan-
ical properties of the product. To state them properly we
need good mathematical models describing the impact of
the alloy composition and rolling process parameters on
the final properties of the steel plates. The metallurgical
processes, however, are so complex that it is often im-
possible to describe them by the formal-analytic expres-
sions. An important and helpful alternative approach in
such cases is the statistical analysis of the industrial data.
In the context of the analysis of metallurgical process-
es we can find various methods of data exploration de-
scribed in the literature, [8-10]. One of the most popular
data-mining methods is the multidimensional regression
analysis. It was applied successfully in the examination
of many relations in the metallurgical industry, [11-14].
In the considered case an additional advantage of this ap-
proach is that it leads to linear constraints and our initial
problem stays in the class of LP problems. However, due
to the nature of any statistical analysis, the coefficients
in the constraints resulting from the regression analysis
are known only approximately. This should be reflected
in the mathematical model of the optimization problem.
Therefore the final optimization task is formulated as the
stochastic programming problem, more precisely, in the
form of so-called Chance Constrained Program, [15-17].

The statistical analysis presented in this paper is
based on the data gathered during the real manufacturing
process in the ISD Czestochowa Steelworks. However,
the proposed optimization approach to modeling the final
mechanical properties of the steel plates can be adopted
in any other steel production process.

2. General description of the optimization problem

It was emphasized in the introduction, that for con-
temporary steel industry it is necessary to produce new
generations of steel products with the help of high per-
formance low cost economical technologies. To meet the
steel market requirements the manufacturers need an op-
timization models, that take into account many different
constraints resulting from the technological standards,
customers expectations and limitations of the implement-
ed technology. Such models would enable the manufac-
turer to attain a specified set of final properties by opti-
mizing the alloying within grade composition and other
predefined requirements. Generally the constraints that
have to be fulfilled are of the following types: chemical
composition constrains (CC), constraints connected with
the parameters defining the realization of the technologi-
cal process (TP), and constraints connected with the steel
plate final properties (SPFP).

The CC constrains can be expressed in the form :
CEi > ai and/or CEi 6 bi, i =1,...n, where CEi stands for
the concentration of i−th chemical element or a linear
combination of such elements. An example of the lat-
ter is the well-known Carbon Equivalent Value (CEV)
which appears in many steel grades definitions.

Parameters defining the realization of the techno-
logical process are primarily connected with the rolling
mill construction and the implemented automatic control
system. They yield TP constraints, which result from the
feasibilities and limitations of the system. All the TP
constraints can be expressed in the linear form, because
all of them are defined by given limit values which, in
order to achieve a desired final result, should not be
crossed by particular technological parameters.

From the market standpoint perhaps the most impor-
tant are the final properties of the product and thus the
SPFP constraints demand the particular attention. The
analysis presented in this paper is primarily concerned
with the mechanical properties of the steel plates de-
scribed by the following three parameters: yield strength
(Reh), tensile strength (Rm), elongation (A). The con-
straints connected with these parameters result from the
steel grade characteristics and, possibly, from the cus-
tomer specifications. However the main problem is that
these parameters cannot be observed directly during the
production process and thus any constraints connected
with them cannot be stated explicitly in the optimization
model. Thus, first we should develop models relating
the final mechanical properties of the steel plate to the
chemical composition of the steel as well as the produc-
tion process parameters. As we pointed out in the intro-
duction, an important method of obtaining satisfactory
models in terms of production control and forecasting
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is a multidimensional regression analysis. In the context
of predicting mechanical properties of steel products it
was used e.g. in [4,12,13,14,18]. In the next section we
develop regression models which can be used for the
SPFP constraints statement.

In every mathematical model of real optimization
problem the basic issue is the establishment of the qual-
ity criterion for the solutions, i.e. the definition of the
objective function. In our paper, similarly as e.g. in [1,6],
it will be the cost criterion. However, in order to make
the obtained models possibly general, we define the cost
quite widely. The cost function (CF) is expressed by a
linear function of various alloy composition elements,
which are multiplied by appropriate weights represent-
ing their relative impact on the total cost. i.e. it takes the
form

CF =

m∑

i=1

wiCEi (1)

where CEi, as previously, stands for the concentration of
the i−th chemical element while wi is its relative weight.
Such objective function can encompass both, directly the
price of admixtures as well as e.g. the cost of techno-
logical process leading to achieving a desired level of a
given element concentration. The most important com-
ponents determining the total cost as well as the adequate
weights are subject of the manufacturer experts choice
and in practice they should be assigned by a production
manager.

3. Regression models in SPFP constraints
formulation

Regression analysis allow to describe the relation-
ship between the input and output variables, without go-
ing into the essence of the phenomena occurring during
the whole process. In this part of the paper we make
use of the regression methodology in order to formulate
the SPFP constraints. Thus we need to develop regres-
sion models describing the relation between the final
mechanical properties of the steel plates and the vari-
ables which can be tracked and controlled during the
production process. A general form for the functional
relations we are looking for can be given as follows:

par = β0 +

k∑

i=1

βiXi + Z (2)

In the above formula the parameter par represents the
yield Reh, the tensile strength Rm, or the elongation
A, dependently on the model, the regressors Xi’s are
the technological characteristics of the rolling process
and the concentration of chemical elements reflecting

the chemical composition of the considered steel grade,
Z stands for the random disturbance of a given model
i.e. it represents the impact of all factors not included
explicitly in the model.

3.1. Description of manufacturing process and the
data

The regression models presented below are built
on the base of the data gathered during the industrial
manufacturing process. Heavy plate production line in
ISD Czestochowa Steelworks consists of the following
sections: steel castings, preparation of furnace charge,
preparation in heating furnaces, rolling, steel plates fin-
ishing, corrosion protection and the quality control. The
whole production line is managed by various computer
systems. The most important ones are the following: au-
tomation system for steel continuous casting, steelworks
management system, system for tracking and control-
ling the rolling process, general production tracking and
quality control system in the rolling department. Data
collected in these systems describe the actual manufac-
turing process, starting from the steelworks and ending
up on final product.

Because the final form of regression models signifi-
cantly depend on the method of the rolling technology, we
present here models which were developed on the base of
the data collected during the production process adopting
a rolling scheme called rolling with controlled finishing
rolling temperature, referred to as CFRT method. It is
one of the most frequently used rolling schemes in the
ISD Czestochowa Steelwork manufacturing practice.

The statistical analysis described in this section is
based on a data set containing about 8 000 records drawn
from a whole database collected between 2008 and 2010.
The set was split in half. The first part was used for mod-
els development, while the second one formed a base for
the prediction error analysis. The sets will be referred
to as MD and PEA sets, respectively. Each record in the
data sets contains 38 values of various characteristics of
the production process and the steel alloy. These vari-
ables may be considered as potential regressors in our
models. As it was pointed out in the literature, see e.g.
[8,19-21], the industrial data are typically noisy and can
be highly collinear. Thus the data was carefully examined
especially for the elimination of weak data points such
as outliers and leverage (influential) points, see [19,22].
In this study an observation was considered as an outlier
if the absolute value of the related residual was at least
three times greater than the residuals sample standard
deviation. It turns out, that this condition was satisfied
only in 65 cases.
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Some fundamental statistical characteristics of the
quantities which are finally used as regressors in the
developed models are presented in Table 1.

TABLE 1
Statistical characteristics of the empirical data – CERT method of

rolling

Explanatory
variable Min Max Mean

Standard
Deviation

Th [mm] 6.0 111.0 26.93 16.86

FRT [◦C] 755 990 852.2 28.9

C [%] 0.09 0.31 0.151 0.021

Mn [%] 0.45 1.60 1.22 0.31

Si [%] 0.14 0.49 0.272 0.057

Nb [%] 0.001 0.040 0.006 0.008

Cr [%] 0.02 0.52 0.048 0.047

Ni [%] 0.048 0.265 0.073 0.014

Ti [%] 0.001 0.015 0.0029 0.0011

P [%] 0.007 0.024 0.013 0.0026

V [%] 0.001 0.119 0.004 0.005

The denotation in Table 1 is the following: Th – final
thickness, FRT – finishing rolling temperature, and all
the remaining symbols denote chemical elements.

3.2. Regression models

To determine the final set of explanatory variables
we use the so-called Hendry’s approach, also known as
general-to-specific modeling, see [22]. It can be summa-
rized as ”intended over-parameterization with data-based
simplification”. We start with the set of all potentially
significant explanatory variables and then we eliminate
the insignificant ones with the help of a combination
of various statistical tests. For this purpose we adopt
three well-known tests; Student t-test, F – ratio test for
nested models and Lagrange Multiplayer test for nested
models. What is important, the asymptotic distribution
of the latter does not depend on the probability distribu-
tion of the model disturbance Z . It is worth emphasizing
here, that the phrase ”insignificant variable” has spe-

cial meaning in the regression analysis. It denotes the
variables which do not incorporate any valuable infor-
mation into the model. Some variables which are signif-
icant from the technological standpoint may appear to
be insignificant in a regression analysis sense. It may
happen for example in the case where such variables
(e.g. due to given technological procedures) change their
values in very small interval, or in the situation where
a given variable incorporates the same information as
another variable already included in the model. For ex-
ample in this study it appeared that various quantities
describing the rolling process were ”insignificant”. Thus
such potential regressors as number of rolling passes, the
magnitude of rolling velocity or pressure, and various
characteristics of cooling conditions are not included in
presented regression models. Obviously all these process
parameters are extremely important and they have great
impact on the final properties of the steel plate. How-
ever in the CFRT method of rolling all this parameters
are established by the implemented computer system on
the base of the information provided by the employee
operating the rolling mill. The information consist of
the slab characteristics (first of all its chemical compo-
sition) as well as characteristics of the expected final
properties of the product. The employee can also set the
finishing rolling temperature. Then the rolling schedule
is set up by a computer system which tracks and con-
trols the whole rolling process. As a consequence, in the
considered production scheme the rolling parameters are
strongly (almost uniquely) dependent on the other vari-
ables which are included in the regression models.

To estimate the regression coefficients βi, i =0,...,k,
in the final model (2) one may consider various methods
suggested in literature in the context of industrial data
examining, [19-22]. In this study apart from the usual
Least Squares method (LS) also least absolute devia-
tions method and ridge regression method were taken
into account. However, the cross validation studies show
that in the case of CFRT method of rolling the regres-
sion models based on LS-estimates give similar or even
less prediction errors than the other ones. Thus, finally,
the LS method was used for the regression parameters
estimation. The estimated models for the parameters Rm,
Reh, and A obtained in this studies are presented below.

R̂m = 278.31 + 839.844C + 90.129Mn + 64.8577Si + 75.8515Cr + 145.227Mo+

1169.12 Nb + 52.648Ni + 649.197V + 432.95P − 0.0219599FRT − 0.568248Th
R̂eh = 338.999 + 384.433C + 81.245Mn + 40.6527Si + 49.6527Cu + 184.166Mo+

2048.55Nb + 733.913V − 0.146888FRT − 1.14488Th
Â = 34.8738 − 22.2288C − 2.83348Mn − 3.99648 Si − 36.1474Nb + 286.567Ti+

0.0271583Th

(3)
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The symbols used in the above equations has the
same meaning as in Table 1. To save article space, the
standard errors of coefficient estimators are omitted in
the equations (3) – their exact values will play no role in
the sequel of the paper. However it is worth mentioning,
that they were at least three times less than the absolute
values of the appropriate estimates. The most important
for the presented here approach are the prediction errors
related to these models. The prediction error probability
distribution (PED) fully describes the predictive capa-
bilities of the regression model. In this study the PEDs
were examined on the base of the PEA set containing
4000 records which, as it was described previously, were
not included in the MD set. Thus the results of the study
reflect the true nature of the empirical distribution of the
prediction errors. The below presented Table 2 shows
the statistical characteristics of the probability distribu-
tions of the errors ERm = Rm-R̂m, EReh =Reh-R̂eh and
EA = A- Â

TABLE 2
Statistical characteristics of the empirical distributions of prediction

errors ERm, EReh and EA

Empirical Distribution Characteristic
Prediction Error

ERm EReh EA

Mean -0.27 -0.01 -0.03

Standard Deviation 14.61 20.79 2.24

Mean Absolute Error 10.62 16.18 1.68

Q
ua

nt
ile

s
of

O
rd

er
p

p =0.05 -22.43 -32.31 -3.52

p =0.1 -16.47 -24.32 -2.87

p =0.2 -10.50 -16.71 -1.83

p =0.3 -6.48 -10.89 -1.06

p =0.4 -3.25 -6.24 -0.46

p =0.5 (Median) -0.43 -1.34 0.07

p =0.6 2.57 3.71 0.52

p =0.7 5.77 9.20 1.03

p =0.8 9.92 16.60 1.58

p =0.9 16.82 26.29 2.40

p =0.95 22.31 36.15 3.43

The SPFP constraints connected with the typical
grades and/or customers requirements are of the follow-
ing form:

R̂m(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th) 6 Rmmax

R̂m(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th) > Rmmin

R̂eh(C,Mn, Si,Cu,Mo,Nb,V, FRT,Th) > Rehmin

Â5(C,Mn, Si,Nb,Ti,Th) > Amin
(4)

where R̂m(·), R̂eh(·), and Â(·), are the linear functions of
indicated variables given by (3) while the Rmmin, Rehmin
and Amin are the minimal values of the indicated parame-
ters determined in the specifications, Rmmax is the upper
limit for the possible values of Rm.

It results from the equations (3) that all constraint
given by (4) are linear. Because the assumed form of
the cost function (1) as well as the usual form of the
CC constraints are also linear it seems, that the opti-
mization problem can be modeled as LP task. One can
notice however, that the values of the coefficients in the
linear expressions appearing on left-hand sides of these
inequalities are uncertain. These values were estimated,
and it means that they are realizations of some random
variables (the estimators) and this fact cannot be neglect-
ed. The probabilistic nature of the constraints coefficients
leads to Chance Constrained Programming formulation
of our problem, see e.g. [16-17].

4. Chance Constrained Programming approach

Chance Constrained Programming (CCP) also
known as Probabilistic Programming, see [15-16], is a
class of stochastic optimization tasks in which some of
the data may be subject to significant uncertainty. Such
models are appropriate when the model parameters can-
not be measured/stated without error or when they evolve
over time and decisions have to be made prior to ob-
serving the entire data stream. The concept of CCP was
introduced in the classical work of Charnes and Coop-
er [15]. Now CCP belongs to the major approaches for
dealing with random parameters in optimization prob-
lems. In models built for real-world problems various
uncertainties enter the inequalities describing the natural
constraints that should be satisfied for proper working of
a system under consideration. We adopt the approach to
deal with the uncertainties connected with the models
for prediction of the final mechanical properties of the
steel plates.

4.1. LP versus CCP approaches to the optimization
problem

Let us consider a deterministic LP problem in the
following form:

minimize f (x1, . . . , xn) = c1x1 + c2x2+ . . . +cnxn
subject to the following constrains:
ai1x1 + ai2x2+ . . . +ainxn > bii =1,. . . ,m
x1 >0, . . . , xn >0

where x=[x1,x2, . . . ,xn]T is the decision variable vector,
c=[c1,c2, . . . ,cn ]T is a vector of the objective function
coefficients, A=[ai j]mxn is the matrix of technical coef-
ficients of the system of linear inequalities, and a vector
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b=[b1,b2, . . . ,bm]T forms a right hand side of the con-
straints system.

In many real world problems it turns out that some
of the elements of matrix A and/or vectors b, c are un-
certain due to their random nature. In all such cases it
is difficult or even impossible to know which solution
will appear to be feasible. In such circumstances, one
would rather insist on decisions guaranteeing feasibility
”as much as possible”. This loose term refers to the fact
that in some problems constraint violation can almost
never be avoided because of unexpected random events.
On the other hand, after a proper estimating the dis-
tribution of the random parameters, it makes sense to
call decisions feasible (in a stochastic meaning) when-
ever they are feasible with high probability, i.e. only a
low percentage of realizations of the random parameters
leads to constraint violation under this given decision.
It leads to CCP formulation of the problem, where the
deterministic constraints are replaced with a probabilistic
ones in the following way:
minimize E f (x1, . . . , xn) = E(c1)x1+E(c2)x2+ . . . +
E(cn)xn
subject to
Pr[ai1x1 + ai2x2+ . . . +ainxn > bi ] > qii =1,. . . ,m

x1 >0, . . . , xn >0
where Pr[B] denotes a probability of an event B, while
the qi ∈ [0,1],i =1,. . . ,m, are some prescribed values of
so-called probability levels given by the decision mak-
er for each constraint separately. Such a version of the
problem is called the Chance Constraint Programming
model with individual constraint probability levels.

So, according to the CCP idea, the SPFP constraints
in our optimization model should take the following
form:

Pr[Rm(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th)
6 Rmmax] > qRm

Pr[Rm(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th)
> Rmmin] > qRm

Pr[Reh(C,Mn, Si,Cu,Mo,Nb,V, FRT,Th)
> Rehmin] > qReh

Pr[A(C,Mn,Nb, Si,Ti,Th) > Amin] > qA

(5)

where qRm, qReh and qA are the prescribed probability
levels given by the decision maker and Rm, Reh, and
A are the random values of the considered parameters
obtained for the fixed values of the indicated variables.

Generally speaking, stochastic optimization prob-
lems belong to the most difficult problems of mathe-
matical programming, see [17,23]. However, some of
them can be transformed to an equivalent deterministic
optimization task, see [16,17]. Our problem belongs to
the latter class of problems. Indeed, it can be quite easily

verified that the inequalities (3) hold if and only if the
following inequalities are satisfied, see e.g [16]:

R̂m(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th)
6 Rmmax − Q1

Rm

R̂m(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th)
> Rmmin − Q2

Rm

R̂eh(C,Mn, Si,Cu,Mo,Nb,V, FRT,Th)
> Rehmin − QReh

Â5(C,Mn,Nb, Si,Ti,Th) > Amin − QA

(6)

where Q1
Rm,Q

2
Rm,QReh and QA denote the quantiles of

the probability distributions of the prediction errors
ERm, EReh, and EA, see Table 2. The order of the quantile
Q1

Rm equals qRm, whilst the remaining ones have orders
1-qRm,1-qReh and 1-qA, respectively.

Examples of optimization problems and a compar-
ison of the solutions obtained with the help of the de-
terministic and probabilistic approaches are presented in
the next section.

5. Examples of an optimization problem and their
solutions

It results from the inequalities (3), (6) that the de-
cision variables in our optimization models for mod-
eling the mechanical properties of the steel plates are
the following: C, Mn, Si, Cr, Cu, Mo, Nb, Ni, V, P, Ti,
FRT, Th. The remaining, usually residual (or tramp)
elements present in the alloy and other technological or
final product parameters should stay within the already
observed ranges resulting from the industrial practice
and technologies applied in the institution. Obviously,
they should also comply with additional constraints that
result from the grade standards and/or customer require-
ments.

Now, let us consider two examples illustrating the
difference between the solutions resulting from both LP
and CCP approaches.

Example 1. Let the objective function (1) in the first
example take the following form:

CF = 5Cr + 40Mo + 20Nb + 30V (7)

Such cost function is unitless. The weights represent
actual relative impact of a given factor on the total cost.
As it was mentioned before, the weights may result di-
rectly from the price of given admixture and/or the cost
of the process connected with the controlling of its con-
centration. It should be emphasized here that the weighs
in (5) and in the sequel of the paper, play only an exem-
plary role, because the prices of the alloying elements
may be a subject of great fluctuation in the world market.
The examples of such situations, where prices of some
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mineral commodities dramatically rose whilst other drop
even more than two times can be found in the statistic
data describing the mineral commodities world market,
see e.g. [24].

The omission of the remaining decision variables
in the formula (7) may reflect the fact that they have
neglectably small impact on the total cost or that their
desired (or not) level is already known and it shouldn’t
(or cannot) be changed. Let us assume for example , that
the concentration of Cu and Ni in the alloy equals 0.11%,
0.19%, respectively. In the final optimization program it
should also be taken into account that all decision vari-
ables should take values within observed ranges given
in Table 1.

Now, assume that our task is to produce the plate
of the final thickness 85 mm and made of the weld-
able fine grain structural steel which is characterized
as S460M grade according the European standards
EN10025-4:2004. So, finally all constraints connected
with our decision variables can be formulated as follows
(the units are omitted):

C 6 0.18 Mn 6 1.70, Si 6 0.60,Cr 6 0.30,
Cu = 0.11,Mo 6 0.20,Nb 6 0.05,Ni = 0.19,

V 6 0.12,P 6 0.035,Ti 6 0.05,
CEV = C + Mn/6 + (Cr + Mo + V )/5+

(Cu + Ni)/15 6 0.48
FRT > 755, FRT 6 961,Th = 85,

(8)

and

Rm 6 680,Rm > 500,Reh > 400, A > 17 (9)

In considered case all constraints are linear, thus, if we
decide to ignore the fact that the coefficients in formu-
lae (3) are uncertain, the optimization problem can be
expressed as the following LP task:

minimize CF=20 Cr + 30 Mo + 25 V+25 Nb
s.t. constraints given by (6)
and

R̂m(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th)
6 680,

R̂m(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th)
> 500,

R̂eh(C,Mn, Si,Cu,Mo,Nb,V, FRT,Th)
> 400,

Â5(C,Mn,Nb, Si,Ti,Th) > 17

(10)

The optimal solution of this LP problem is the following
(here and in the next presented solutions, the chemical
elements are expressed in %) :

C =0.18, Cr=0.02, Cu=0.11, Mn=1.6, Mo=0.01,
Nb=0.0206, Ni=0.19, P =0.007, Si=0.49, Ti=0.001,
V =0.001, FRT=755◦C, Th=85mm.

The expected values of the parameters Rm, Reh and
A resulting from this solution are: 582.6 MPa, 400 MPa,
and 26.23%, respectively. The minimal cost equals 0.94.
The latter value cannot be directly interpreted - it can be
only used for comparisons with other solutions. So, now
let us compare it with the value of the optimal cost found
in the CCP version of this problem. For this purpose let
us assume the probability levels qRm, qReh and qA equal
to 0.95, compare (5). Consequently, from the formulae
(6) and Table 2 we obtain the following form for the
CCP optimization program in this case:

minimize CF=5 Cr + 40 Mo +20 Nb +30 V
s.t. constraints given by (8)
and

R̂m(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th)
6 680 − 22.31,

R̂m(C,Mn, Si,Cr,Mo,Nb,Ni,V,P, FRT,Th)
> 500 + 22.43,

R̂eh(C,Mn, Si,Cu,Mo,Nb,V, FRT,Th)
> 400 + 32.31,

Â5(C,Mn,Nb, Si,Ti,Th) > 17 + 3.52

The optimal solution is: C =0.18, Cr=0.02, Cu=0.11,
Mn=1.6, Mo=0.01, Nb=0.0359, Ni=0.19, P =0.007,
Si=0.49, Ti=0.001, V =0.001, FRT=755◦C, Th=85mm.
The expected values of the parameters Rm, Reh and A in
this case are equal to 582.6 MPa, 431MPa and 25.7%,
respectively. The minimal cost equals 1.248 and, as we
see, it is a greater value than in the LP program. It can
be easily explained, because the CCP program takes in-
to account the risk connected with the uncertainty and
tries to find less risky values of the parameters connected
with mechanical properties. However, we have to cover
the cost of these safety margins.

Example 2. To illustrate the influence of the weights
on the solutions let us consider now another cost func-
tion. Assume now that although the unit costs connected
with the concentration of the primary alloying elements
are relatively small, their influence on solution cannot be
neglected. So, just for example, let us assume that the
cost function (1) now takes the form:

CF=5 Cr + 40 Mo +20 Nb +30 V +C+2 Si+3 Mn
In this case we obtain the following solutions for the

LP and CCP problems.
Solution for LP problem. Optimal values of

explanatory variables: C =0.18, Cr=0.02, Cu=0.11,
Mn=1.286, Mo=0.01, Nb=0.04, Ni=0.19, P =0.007,
Si=0.14, Ti=0.001, V =0.001, FRT=755◦C, Th=85mm.
Expected values of the parameters describing mechan-



978

ical properties: Rm=554.3 MPa, Reh=400.0 MPa, A =

27.8%. Minimal value of the cost function: 5.64.
Solution for CCP problem. Optimal values of

explanatory variables: C =0.18, Cr=0.02, Cu=0.11,
Mn=1.6, Mo=0.01, Nb=0.04, Ni=0.19, P =0.007,
Si=0.14, Ti=0.001, V =0.0090, FRT=755◦C, Th=85mm.
Expected values of the parameters describing mechani-
cal properties: Rm=586 MPa, Reh=431MPa, A = 26.9%.
Minimal value of the cost function: 5.66.

We see again, that minimal cost value is greater in
the case of CCP model. It can be also noticed that the
only explanatory variables which have different values
in the presented optimal solutions are: Mn, Nb, Si, V.

6. Conclusions and final remarks

As it can be seen in the examples above the opti-
mal solutions found in CCP framework lead to greater
cost than those obtained via related LP programs. On
the other hand the CCP models for the considered opti-
mization tasks are much more realistic. It is because the
conventional LP model does not take into account the
uncertainty connected with the forecasting of the values
of parameters characterizing the mechanical properties
of the steel plate. Consequently, the applications of LP
models in metallurgical practice can be very costly due
to the large probability that the desired parameter lev-
els will not be achieved. So it seems, that such mod-
els should be avoided in industrial practice. Instead, in
all cases where uncertain parameters appear in the con-
straints, the CCP programs should be used as models of
the optimization problems.

The decision variables appearing in considered op-
timization models differ with respect to the extent to
which they may be practically removed or controlled in
steelmaking industrial practice. Some of them, e.g. Ni
or Cu, once presented in molten steel, can’t be removed
at all. One can control their concentration in the alloy
by controlling their amount in furnace charge. In the
optimization models the concentration of such variables
could be given in the form of equality constraint, sim-
ilarly as in presented examples. Concentration of some
other elements, e.g. Cr, Mo, can be controlled rather
inefficiently under the industrial melting furnace prac-
tice and the process of control itself may be very costly.
Again, the control of the amount of such elements in the
furnace charge is perhaps the best solution. Yet anoth-
er elements, due to participation in oxidation/reduction
reactions at steel making temperatures, can usually be ef-
ficiently removable or controllable. All this facts should
be reflected in a proper construction of the system of
constraints as well as the form of the cost function (1).
The more limitations connected with the adopted techno-

logical process are taken into account, the greater is the
actual role of such optimization models. Obviously the
limitations should also include those related to the con-
trollability of element concentration and the processing
cost of these ”controls”. The presented examples also
show that the proper choice of the cost function has
the fundamental importance. Thus it should be stressed
again that both, the constraints and the weights deter-
mining the cost, have to be defined carefully by factory
experts, and that they should be each time adapted to
changing market and/or modified manufacturing tech-
nologies.

The optimization problems investigated in the paper
were treated as versions of the LP task. It was possible,
because in presented examples all considered restrictions
appear to be linear as well as the assumed form of the
cost function. As it was pointed out, such a form of
restrictions is very natural in considered class of opti-
mization problems. From computational point of view
such a formulation of the problem is very convenient
because the optimal solution can be found effectively via
simplex method. But even if some of the constraints were
nonlinear or if the utilities connected with the production
cost were better reflected by nonlinear criterion function,
the CCP approach could also be adopted. However in
such cases usually much more sophisticated numerical
techniques should be used to find the solution, see e.g.
[18,23,25].
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