DOI: https://doi.org/10.24425/amm.2025.155495

H.A. JABAR^{©1}, R. EMBONG^{©1*}, F.M. YAHAYA^{©1}, M.I. ALBIAJAWI^{©2}

SUSTAINABLE DEVELOPMENT OF CEMENT MORTARS: A REVIEW OF PALM KERNEL SHELL-BASED ADMIXTURES AND PRE-HYDRATION TECHNIQUE

This review explores sustainable cement mortar production by examining palm kernel shells (PKS) as admixtures and the application of pre-hydration techniques. The environmental impact of traditional cement necessitates alternative materials. PKS, an agricultural waste product, offers a potential solution due to its availability and pozzolanic properties. Pre-hydration, involving controlled water addition before mixing, further improves mortar performance and reduce cement consumption. The results shows that PKS-based admixtures, when combined with pre-hydration technique, improve mortar strength, durability, and sustainability while reducing environmental impact. Future research should aim to optimize the PKS and pre-hydration techniques for various applications, and investigate the ability to use these methods in large-scale construction projects. These developments could lead to a more sustainable construction industry.

Keyword: Palm Kernel shells; Cement; Admixtures; Physical Characteristics; Chemical Characteristics; Pre-Hydration

List of abbreviation

- Palm Kernel Shells (PKS)
- Supplementary Cementitious Materials (SCMs)
- Specific Gravity (SG)
- Saturated Surface Dry (SSD)
- calcium silicate hydrate (C-S-H)

1. Introduction

The major component used in the building industry is cement and the process of cement production harms the environment in many ways [1-3]. Cement manufacturing is responsible for contributing about 8% of the overall global CO₂ emissions which causes greenhouse emissions and climate change [4,5]. To overcome this problem, scholars have looked into the prospects of different cementation binders and materials that will decrease the quantity of CO₂ emissions from cement-based items by utilizing numerous industrial wastes and reprocessed aggregates [6]. Palm kernel shells (PKS) is one of the ideal material that considered as an industrial waste product of the palm oil industry [7,8]. Studies on substituting cement or aggregate

in cement mortars with PKS have revealed the possibility of developing environmentally friendly products [9]. Depend on studies using palm oil industry products like PKS clinker would reduce cement production by about 3.3% and carbon emissions by about 52% is due to pozzolanic characteristics in PKS that is supported by given results in the reference [10,11]. Furthermore, pre-hydration of cement has also been investigated as a strategy to optimize the use of cement and improve the sustainability of cement-based materials [12]. Using pre-hydration technique lead to decrease the total consumption of cement in construction projects, which, in turn, will decrease the adverse effects caused by concrete production [12-14]. Studying the Pre-hydration methods and PKS based admixtures of cement mortars create the basis for the development of a new generation of environmentally friendly construction practices. It promote the increased durability and efficiency of the materials used in construction moreover decrease the effects of the construction on the ecosystem. There is a necessity to carry out additional experimental research, set rules of procedure in the industry, and enhance people's familiarity with the concept. Prospects of cement mortars with palm kernel shell-based admixtures and pre-hydration which is significantly decrease the environmental effects of construction with improved mechanical properties at the same time [15,16].

^{*} Corresponding author: rahimahe@umpsa.edu.my

UNIVERSITI MALAYSIA PAHANG, FACULTY OF CIVIL ENGINEERING TECHNOLOGY, LEBUHRAYA TUN RAZAK, 26300 GAMBANG, PAHANG, MALAYSIA

 $^{^{2} \;\;}$ TSINGHUA UNIVERSITY, SHENZHEN INTERNATIONAL GRADUATE SCHOOL, SHENZHEN 518055, CHINA

With growing realization and approaches to declining resources and global crises of environmental degradation especially in the construction industry, these green solutions should be considered for viability [17]. The combined use of sustainable materials like Supplementary cementitious materials (SCMs) and pozzolanic materials with pre-hydration techniques represents a comprehensive strategy for addressing the environmental impact of traditional mortar production. This approach not just enhances mortar quality and performance also reduces the construction industry's overall environmental footprint. As construction practices evolve towards greater sustainability, integrating prehydration offers a promising avenue for improving both the sustainability and resilience of mortar structures. This review paper aims to synthesize the current state of research on the use of PKS based admixtures and pre-hydration techniques in the development of sustainable cement mortars.

2. Palm kernel shell-based admixtures for cement mortars

Recent studies are focused on using agricultural waste in cement mixtures. In this review, the focus will be on studying the impact of using waste from the palm oil industry which is PKS as illustrated in Fig. 1, the processes to extract PKS, as using PKS in concrete mixtures, whether as an alternative to aggregates or cement, reduces the environmental impact resulting from its accumulation in environmental landfills, in return, reduces the demand for raw materials. According to [18], Malaysia was responsible for the production of about 19900 million tons of the world's total palm oil supply, accounting for 26% of global palm oil production. Meanwhile, Indonesia is a dominant palm oil producer in the world and produced 43500 million tons of palm oil in 2020, accounting for 58% of the world's total supply [18].

Several research have been conducted in recent years on the use of palm kernel shell as a partial replacement for cement or aggregate in cement-based products [19]. According to research, using palm kernel shell powder as a partial substitute for cement improves the workability, compressive strength, and flexural strength of concrete [20,21]. The recommended replacement rate

is 10-20% by volume, with greater levels potentially affecting the mortar's mechanical qualities.

The hardened performance of concrete mix with PKS are vary depending on the physo-chemical properties of PKS. Physical charecterization which contain specific gravity, thickness and shape, compacted bulk density states, and water absorption are reviewed in TABLE 1. Based on studies [15,22], the colour of PKS ranges from a dark grey to a deep black and its thickness vary significantly from (0.15 mm to 8 mm) based on the type and age of palm tree. The shapes of PKS showed diiferent forms of polygonal shape to angular based on the processing used to extract it from nuts [23]. Various researchers have indicated in the TABLE 1 that the specific gravity (SG) of PKS has never exceeded 2.0, and PKS has an SG values ranged from 1.15-1.62. The highest value for an SG of PKS was given as 1.51 by [24], and According to [25], the lowest SG value of PKS was reported to be 1.15, while [26] and [27] reported a SG value of 1.17. Furthermore, [28-31], reported the same SG value of 1.37. The values corresponding to different studies is less than 2 SG that is correspondance to relationship of pozzolanic activity which is due to pozzolanic reactions during the curing days. The duration of curing days increase the samples strength with pozzolanic reactions enhancement [26].

Bulk density represents the mass of a material relative to the total space it occupies, including the void volume between particles, the particle volume and the internal pore volume [32], Based on the TABLE 1, the values of loose bulk density vary from 568 kg/m³ [33] to 683 kg/m³ [34,35], according to [36] the size and shape of PKS significantly influence the packing density, which leads to fluctuations in the bulk density and specific weight. Due to its low bulk density, PKS is classified as a low-weight aggregate. Water absorption refers to the amount of water that needs to be added to the aggregate to achieve a saturated surface dry (SSD) environment. TABLE 1 and show that the water absorption percentage of PKS is between 7.6% and 25.7%.

TABLE 2 shows the chemical compound of PKS based on literature data. The chemical composition of PKS differs relying on factors such as the origin of the material, treatment methods, combustion temperature, boiler operating conditions, and geographic location of the plantation. As shown in TABLE 2,

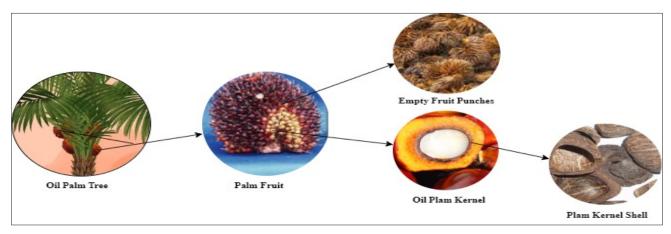


Fig. 1. Process to produce PKS from the oil palm tree

PKS has a high silica content and does not contain any detected toxic elements. Previous research has indicated that the highest reported SiO₂ value for PKS is 55.6% [37]. The use of PKS in cement-based materials not only mitigates the environmental impact of cement production but also helps to address waste management challenges in the palm oil industry [9,38].

TABLE 1 Physical properties of PKS

REF.	Maximum size (mm)	Specific gravity	Bulk Density (kg/m³)	Water absorption (%)	
[39]	10	1.33	_	7.6	
[25]	10	1.15	644	25.7	
[24]	20	1.51	_	8.7	
[33]	20	1.19	_	16.99	
[28]	19	1.37	_	_	
[40]	8	1.48	_	18.7	
[29]	_	1.37	568	12.47	
[41]	16	1.31	_	19.93	
[30]	16	1.37	635	24	
[26]	12.5	1.17	590	23.3	
[42]	10	1.22	626	18.7	

TABLE 2 Chemical properties of PKS

REF.	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	Na ₂ O ₂	K ₂ O	SO ₃
[43]	49.63	12.12	0.41	7.96	_	8.24	6.21	_
[44]	47.1	15.19	12.2	7.59	0.93	0.94	0.25	_
[45]	31.5	16.5	1.4	10.6	16.9		1.75	7.27
[46]	46.2	2.3	3.2	15.1	3.7	1	21.2	_
[37]	55.69	9.43	3.32	11.21	4.85	1.76	9.71	0.67
[46]	46.2	2.3	3.2	15.1	3.7	1	21.2	_
[47]	11.6	0.985	12.9	58	1.76		5.33	2.35
[48]	46.23	4.921	31.013	4.786	0.667	1.32	4.254	2.257
[49]	45.13	1.67	0.02	1.03	1.98	_	1.11	_

3. Hydration reaction

The heat produced through the mixing cement processing of cement and water is referred to hydration heat, which indicates an exothermic reaction. Cement paste has a variety of physical properties and is a porous substance with many scales. Approximately half of the volume of hardened hydrated mortar consists of calcium silicate hydrate (C-S-H) [50]. Cement hydration reaction study is complicated but necessary for improving concrete durability and strength [51-53]. As shown in Fig. 2 [54], the cement hydration kinetic reaction is divided into five phases: pre-induction, induction, acceleration, deceleration, and steady-state [55].

It is critical to accelerate the cement hydration rate when using mortar and concrete in certain applications. For example cement hydration rate acceleration is essential in cold weather concreting to ensure timely setting and strength development, preventing issues like freezing before curing [56]. It is also es-

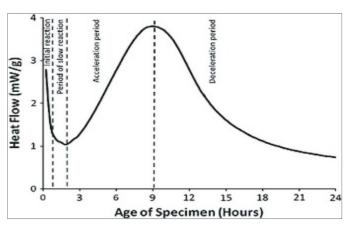


Fig. 2. Cement hydration phases

sential in rapid repair applications, such as roads and runways, here quick setting reduces downtime and efficiently restores functionality [57]. Additionally, there are various approaches to accomplish this aim, such as enhancing cement fineness, escalating the curing temperature and decreasing the water and cement percentages. Furthermore, it turns out that using specifically made admixtures to speed up cement hydration is a workable strategy [58]. These accelerators categorized into two types based on their usage: those intended for sprayed concrete and those created for cast concrete [58]. The first category aids in rapid cement setting within minutes of hydration and encourages early strength growth, while the second facilitates early strength development without affecting the setting time [59]. Furthermore, two new fields in cement research have gained significance as it advances. These include the growing incorporation of new SCMs materials into cement compositions and the increasing adoption of additive manufacturing techniques in the building industry [60]. Note that commonly used SCMs, typically decrease compressive strength [61]. This emphasizes the necessity for creative solutions to manage and maximize the qualities and functionality of cement-based materials, especially in light of changing building practices and environmental concerns [62]. A result of the hydration reaction between cement and water is the evolution of properties in cement-based materials over time [63]. The rate of hydration in Portland cement is significantly impacted by temperature, just like in many other chemical reactions [64]. In order to understand material behavior, it is imperative to look into how temperature and time interact to affect the rate of cement hydration. This includes things like setting, cementing, and changing in different ways over time [65]. These kinetics are usually evaluated by tracking the evolution of hydration heat [66], which has direct and useful applications in calculating temperature variations related to the heat produced during the hydration of cementbased materials [55]. The heating which is produced during reaction and kinetic performance of mortar consisting of steel slag as a cement replacement with varying temperatures were examined by Han et al. [67], for instance. Gołaszewska et al. [68] constructed isothermal calorimeter to investigate changes in early-age intensity of hydration heat of water-cement ratio in cement paste and mortar. Portland cementitious materials

with low heat and early strength were studied for hydration by Wang et al. [69], using an isothermal calorimeter. Overall, the strength and durability of concrete are highly dependent on the hydration heat produced during the mixing process. The heat of hydration evolution has been frequently employed in exploring cementitious material hydration dynamics, which is provide information throughout the curing ages of samples, and during many years of research, heat data has been adequately with kinetic reaction parameters for example the level of hydration reaction. To measure the heat which is resulted from hydration reaction three primary methods: the semi-adiabatic approach, the fully adiabatic technique, and the isothermal calorimeter technique [69]. The isothermal calorimeter technique has been widely used to study heat assessment, particularly early-age hydration heat development, and the kinetics of cementitious materials[69]. Accelerating the cement hydration rate is crucial for certain applications, such as increasing the curing temperature, improving cement fineness, and decreasing the water and cement percentages. The construction industry can manage and optimize the properties and functionality of cement-based materials by incorporating additive manufacturing and supplementary cementitious materials into cement compositions.

Using pozzolanic materials, like PKS, has a notable impact on the hydration behavior of cement mortars[70]. PKS ash, which is rich in silica, reacts with the calcium hydroxide formed during cement hydration to produce additional calcium silicate hydrate (C-S-H) [71]. This process enhances the density of the mortar matrix and contributes to long-term strength [72]. While this pozzolanic reaction is slower than the hydration of traditional cement, it offers benefits such as increased durability and better resistance to chemical attacks [72,73] Moreover, other pozzolanic materials, such as fly ash and silica fume, improve the structure by reducing permeability and refining pore distribution [74,75]. Incorporating these materials not only improves the mechanical properties and durability of cement mortars but also supports sustainable construction practices by reusing agricultural and industrial waste.

4. Pre-Hydration Techniques

The morphology of cement mortar is a porous structure varying size particles material with different physical characteristics and varying size scales. The vital chemical component in hardened cement paste is C-S-H, which accounts for at least fifty percent of the volume [50]. Accurately imitating the performance of concrete requires constructing a substantial model of cement mortar paste and progressing to the overall performance of mortar composite material [76]. The chemical composition and fineness and kind of cement, the water content, the ratio of additives and admixtures, the mixing technique, and the temperature all significantly influence the qualities of the paste [77]. The hydration of Portland cement produces a range of hydration products, including amorphous or weakly crystalline C-S-H and coarsely crystalline C-H which is typically formed in

conjunction with the hydration of C₃S or C₂S [78]. The primary products of the cement-water hydration progression are calcium hydroxide (C-H) crystals, and C-S-H gel, both on the nanosize [79]. However, the (C-H) crystals are an undesirable component of the concrete composite matrix, because it is ultimately degrading the performance of the concrete. Researchers have incorporated nano-scale particles, such as nano-silica, into concrete to counteract the issues caused by calcium hydroxide crystals [5]. This process triggers a pozzolanic reaction that converts the undesirable calcium hydroxide crystals into the more beneficial calcium silicate hydrate gels. Numerous studies have demonstrated that adding pozzolanic materials, including metakaolin, silica fume, and low-calcium fly ash, can enhance the chemical resistance of concrete [80,81]. Although the hydration process of cement can be complex, its properties can be influenced by admixtures and environmental conditions [82]. To enhance the performance of cement mortars, one potential method is the application of pre-hydration, which aims to improve the achievement of desirable characteristics during the hydration process [83]. Cement Pre-hydration defined as a technique that involves partially hydrating the cement prior to mixing with other ingredients [84]. Chemical admixtures in cement mortars can influence the hydration process due to their application. These admixtures affect the cement matrix and influence the development of the hydration reaction over time [85]. Particularly, waterproofing admixtures can redirect water from affecting the fresh concrete, as they render the concrete hydrophobic through various mechanisms, such as reacting with the calcium hydroxide (CaOH₂) in the cement system or inherently making it waterresistant. Furthermore, the interaction between some admixtures in a given mix can create additional complications that require resolution before their field application [86]. Pre-hydration approaches which partially hydrates cementitious ingredients before final mixing, stimulates better distribution of hydration products, decreasing early-age cracking. When PKS ash was used, the silica composition combines with calcium hydroxide generated during cement hydration, resulting in the formation of extra C-S-H, which increases strength and durability[87,88]. Similarly, pre-hydration benefits other pozzolanic ingredients, such as fly ash and silica fume, by refining the cement's pore structure and increasing homogeneity [89].

5. Conclusion

In conclusion, the sustainable development of cement mortars using Palm kernel shell-based admixtures and pre-hydration presents an improved way to reduce the environmental impact of construction while enhancing the strength and properties of cement mortars. The building construction industry is a significant consumer of raw materials and a major contributor of CO₂ and other greenhouse gases, necessitating a shift towards more sustainable practices. This review reveals that PKS, a readily available agricultural waste, can effectively replace traditional cement ingredients, helping to curb energy demands in clinker

production and waste disposal. Additionally, the pre-hydration technique, which involves pre-hydrating cement particles before mixing with sand, enhances cement utilization and the resulting mortar's strength. Furthermore, the findings of this research indicate that the combined use of pre-hydration technique and PKS in cement mortar is an efficient method to enhance the sustainability and efficiency of cement mortars. Also, PKS is used as a partially replacement with cement in mortar, thereby reducing emissions due to its environmentally friendly nature. Furthermore, PKS enhances long-term strength gain and durability of the mortar due to its pozzolanic properties. Additionally, the use of Admixture increases workability, decreases water requirement, optimizes the hydration process, and improves the mechanical and rheological performance, as well as the density and paste shrinkage cracking.

Recommendation

The use of pre-hydration methods and admixtures based on palm kernel shells in cement mortars appears to be a potential answer in the search for more environmentally friendly building practices. These developments improve the longevity and performance of the materials while also lessening the environmental impact of the building. It is essential to carry out research and development, set industry standards, and increase stakeholder knowledge in order for them to reach their full potential.

Acknowledgement

The authors would like to thank the Ministry of Higher Education (MOHE). for providing financial support under Fundamental Research Grant Scheme (FRGS) No. (FRGS/1/2022/TK01/UMP/02/5 (university reference RDU (220112). Also the Universiti Malaysia Pahang AL-Sultan Abdullah (UMPSA) for laboratory facilities, as well as additional support under internal grant No. RDU 223313.

REFERENCES

- [1] S.P. Dunuweera, R.M.G. Rajapakse, Cement types, composition, uses and advantages of nanocement, environmental impact on cement production, and possible solutions. Adv. Mater. Sci. Eng. **201**, 84158682 (2018).
- [2] M.I. Al Biajawi, R. Embong, K. Muthusamy, H.A. Jabar, N. Hilal, F.M. Nazri, On the Post-Heat Behavior of Cement Mortar Containing Mechanically Modified Ground Coal Bottom Ash. Salud, Cienc. y Tecnol. Conf. 3, 813 (2024).
- [3] Y. Murad, H. Abdel-Jabbar, Shear behavior of RC beams prepared with basalt and polypropylene fibers. Case Stud. Constr. Mater. **16**, e00835 (2022).
 - DOI: https://doi.org/https://doi.org/10.1016/j.cscm.2021.e00835
- [4] M.I. Al Biajawi, R. Embong, H. Abdel-Jabar, S.W. Ahmad, S. Misbari, Utilization of palm kernel shell as cement replace-

- ment materials in concrete: A review. In: AIP Conf. Proc., AIP Publishing, 2024.
- [5] H. Abdel-Jabbar, R. Embong, M.I. AlBiajawi, Role of Nanomaterials in Improving Pozzolanic Properties of Blended Cement: A Review BT Intelligent Manufacturing and Mechatronics. In: R. Abd. Aziz, Z. Ismail, A.K.M.A. Iqbal, I. Ahmed (Eds.), Springer Nature Singapore, Singapore, 2024, pp. 275-285.
- [6] M.I. Al Biajawi, R. Embong, A. Kusbiantoro, H. Abdel-Jabbar, A. Hilmi Azmi, Impact of recycled coal bottom ash as mixing ingredient on fresh and mechanical properties of concrete: A review. Mater. Today Proc. (2023).
 - DOI: https://doi.org/10.1016/j.matpr.2023.10.088
- [7] M.I. AlBiajawi, R. Embong, K. Muthusamy, An overview of the utilization and method for improving pozzolanic performance of agricultural and industrial wastes in concrete. Mater. Today Proc. 48, 778-783 (2022).
 - DOI: https://doi.org/10.1016/j.matpr.2021.02.260.
- [8] N.F.S. Hazman, M.S.M. Zaki, A. Ideris, Carbon catalyst from palm kernel shell (PKS) for methane cracking: Effect of preparation. Mater. Today Proc. (2023).
- [9] H.M. Hamada, B.S. Thomas, B. Tayeh, F.M. Yahaya, K. Muthusamy, J. Yang, Use of oil palm shell as an aggregate in cement concrete: A review. Constr. Build. Mater. **265**, 120357 (2020).
- [10] K. Hasan, M.T. Islam, R. Ferdaus, F.M. Yahaya, Experimental study on environment-friendly concrete production incorporating palm oil clinker and cockle shell powder as cement partial replacement. Mater. Today Proc. (2023). DOI: https://doi.org/10.1016/j.matpr.2023.11.150
- [11] S.S.A.B. Padavala, S. Dey, G.T.N. Veerendra, A.V. Phani Manoj, Experimental study on concrete by partial replacement of cement with fly ash and coarse aggregates with palm kernel shells (Pks) and with addition of hybrid fibers. Chem. Inorg. Mater. 2, 100033 (2024).
 - DOI: https://doi.org/10.1016/j.cinorg.2024.100033
- [12] C. Qian, Z. Zhang, Y. Zhu, Hydration behavior and microstructure of cement-based materials modified by Field's metal particles.,onstr. Build. Mater. 411, 134244 (2024). DOI: https://doi.org/10.1016/j.conbuildmat.2023.134244.
- [13] A. Ozersky, A. Khomyakov, P. Zhao, L. Herzog Bromerchenkel, O. Chernoloz, K. Peterson, New Mitigation Strategies for Cement Prehydration. Constr. Mater. 4, 444-467 (2024).
- [14] P.A.K. Nair, W.L. Vasconcelos, K. Paine, J. Calabria-Holley, A review on applications of sol-gel science in cement. Constr. Build. Mater. 291 123065 (2021). DOI: https://doi.org/10.1016/j.conbuildmat.2021.123065
- [15] M.A. Kareem, A.A. Raheem, K.O. Oriola, R. Abdulwahab, A review on application of oil palm shell as aggregate in concrete Towards realising a pollution-free environment and sustainable concrete. Environ. Challenges 8, 100531 (2022).
 DOI: https://doi.org/10.1016/j.envc.2022.100531
- [16] T.A. Fode, Y.A. Chande Jande, T. Kivevele, Effects of different supplementary cementitious materials on durability and mechanical properties of cement composite – Comprehensive review. Heliyon 9, e17924 (2023). DOI: https://doi.org/10.1016/j.heliyon.2023.e17924

- [17] L. Chen, M. Yang, Z. Chen, Z. Xie, L. Huang, A.I. Osman, M. Farghali, M. Sandanayake, E. Liu, Y.H. Ahn, A.H. Al-Muhtaseb, D.W. Rooney, P.-S. Yap, Conversion of waste into sustainable construction materials: A review of recent developments and prospects. Mater. Today Sustain. 27, 100930 (2024). DOI: https://doi.org/10.1016/j.mtsust.2024.100930
- [18] N.S. Yacob, H. Mohamed, Investigation of palm oil wastes characteristics for co-firing with coal. J. Adv. Res. Appl. Sci. Eng. Technol. 23, 34-42 (2021).
- [19] A. Adesina, P.O. Awoyera, 2 Influence of fly ash in physical and mechanical properties of recycled aggregate concrete. In: P.O. Awoyera, C. Thomas, M.S.B.T.-T.S.I. of R.A.C.P. with F. and P. Kirgiz (Eds.), Woodhead Publ. Ser. Civ. Struct. Eng., Woodhead Publishing, 2022, pp. 25-37.
 DOI: https://doi.org/10.1016/B978-0-12-824105-9.00004-4
- [20] G. Vasudevan, M. Subramaniam, Mechanical properties and sustainability of Palm Kernel Shell Powder (PKSP) as a partial replacement of cement. In: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, 2020: p. 12011.
- [21] S.U. Azunna, Compressive strength of concrete with palm kernel shell as a partial replacement for coarse aggregate. SN Appl. Sci. 1, 342 (2019).
 DOI: https://doi.org/10.1007/s42452-019-0334-6
- [22] N. John, R.M. Shanthi, D. Tensing, Prospects of Metakaolin Admixed Palm Kernel Shell Solid Concrete Masonry Block: A Review. Civ. Eng. Archit. 10, 1354-1372 (2022). DOI: https://doi.org/10.13189/cea.2022.100410
- [23] P. Shafigh, M.Z. Jumaat, H. Mahmud, Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: a review. Int. J. Phys. Sci. **5**, 2127-2134 (2010).
- [24] K.E. Ogundipe, B.F. Ogunbayo, O.M. Olofinnade, L.M. Amusan, C.O. Aigbavboa, Affordable housing issue: Experimental investigation on properties of eco-friendly lightweight concrete produced from incorporating periwinkle and palm kernel shells. Results Eng. 9, 100193 (2021).
 DOI: https://doi.org/10.1016/j.rineng.2020.100193
- [25] E. Baffour-Awuah, S.A. Akinlabi, T.C. Jen, S. Hassan, I.P. Okokpujie, F. Ishola, Characteristics of Palm Kernel Shell and Palm Kernel Shell-Polymer Composites: A Review. IOP Conf. Ser. Mater. Sci. Eng. 1107, 012090 (2021).
 DOI: https://doi.org/10.1088/1757-899x/1107/1/012090
- [26] M.N. Huda, M.Z. Bin Jumat, A.B.M.S. Islam, Flexural performance of reinforced oil palm shell & palm oil clinker concrete (PSCC) beam. Constr. Build. Mater. 127, 18-25 (2016).
- [27] L. Gungat, E.E. Putri, J. Makinda, Effects of oil palm shell and curing time to the load-bearing capacity of clay subgrad. Procedia Eng. 54, 690-697 (2013).
- [28] E. Fanijo, A.J. Babafemi, O. Arowojolu, Performance of laterized concrete made with palm kernel shell as replacement for coarse aggregate. Constr. Build. Mater. 250, 118829 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2020.118829
- [29] A.Z.M.N. Akmal, K. Muthusamy, F.M. Yahaya, H.M. Hanafi, Z.N. Azzimah, Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete. In: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, 2017: p. 12003.

- [30] S.P. Yap, U.J. Alengaram, K.H. Mo, M.Z. Jumaat, High strength oil palm shell concrete beams reinforced with steel fibres, Mater. Construcción 67, 142 (2017).
- [31] M.Z. Jumaat, U.J. Alengaram, H. Mahmud, Shear strength of oil palm shell foamed concrete beams. Mater. Des. **30**, 2227-2236 (2009).
- [32] R. Rynk, M. Schwarz, T.L. Richard, M. Cotton, T. Halbach, S. Siebert, Chapter 4 - Compost feedstocks. In: R.B.T.-T.C.H. Rynk (Ed.), Academic Press, 2022: pp. 103-157. DOI: https://doi.org/10.1016/B978-0-323-85602-7.00005-4
- [33] A.A. Raheem, K.O. Oriola, M.A. Kareem, R. Abdulwahab, Investigation on thermal properties of rice husk ash-blended palm kernel shell concrete. Environ. Challenges 5,100284 (2021).
 DOI: https://doi.org/10.1016/j.envc.2021.100284
- [34] R. Ahmmad, M.Z. Jumaat, S. Bahri, A.B.M.S. Islam, Ductility performance of lightweight concrete element containing massive palm shell clinker. Constr. Build. Mater. **63**, 234-241 (2014).
- [35] P. Shafigh, M.Z. Jumaat, H. Bin Mahmud, N.A. Abd Hamid, Lightweight concrete made from crushed oil palm shell: Tensile strength and effect of initial curing on compressive strength. Constr. Build. Mater. 27, 252-258 (2012).
- [36] U.J. Alengaram, M.Z. Jumaat, H. Mahmud, M.M. Fayyadh, Shear behaviour of reinforced palm kernel shell concrete beams. Constr. Build. Mater. 25, 2918-2927 (2011).
- [37] F.O. Edoziuno, A.A. Adediran, B.U. Odoni, O.G. Utu, A. Olayanju, Physico-chemical and morphological evaluation of palm kernel shell particulate reinforced aluminium matrix composites. Mater. Today Proc. 38, 652-657 (2021).
- [38] E.I. Ohimain, S. Bassey, D.D.S. Bawo, Uses of seas shells for civil construction works in coastal Bayelsa State, Nigeria: a waste management perspective. Res. J. Biol. Sci. 4, 1025-1031 (2009).
- [39] M.A. Tijani, W.O. Ajagbe, O.A. Agbede, Recycling sorghum husk and palm kernel shell wastes for pervious concrete production. J. Clean. Prod. 380, 134976 (2022). DOI: https://doi.org//10.1016/j.jclepro.2022.134976
- [40] I.T. Yusuf, Y.O. Babatunde, A. Abdullahi, Investigation on the flexural strength of palm kernel shell concrete for structural applications. (2018).
- [41] M. Gibigaye, G.F. Godonou, R. Katte, G. Degan, Structured mixture proportioning for oil palm kernel shell concrete. Case Stud. Constr. Mater. 6, 219-224 (2017). DOI: https://doi.org/10.1016/j.cscm.2017.04.004
- [42] P. Shafigh, H. Bin Mahmud, M.Z. Bin Jumaat, R. Ahmmad, S. Bahri, Structural lightweight aggregate concrete using two types of waste from the palm oil industry as aggregate. J. Clean. Prod. 80, 187-196 (2014).
- [43] D.O. Adeyanju, M.A. Kareem, O.S. Awogboro, A.U. Adebanjo, W.O. Oduoye, Compressive strength and water absorption of concrete with palm kernel shell ash a s partial replacement for cement. UI J. Civ. Eng. Technol. 3, 7-15 (2021).
- [44] N.A. Sarani, A.A. Kadir, M.F.M. Din, A. Amiza Hashim, M.I.H. Hassan, N.J.A. Hamid, N.N.H. Hashar, N.F.N. Hissham, S.F.S.M. Johan, Physical-mechanical properties and thermogravimetric analysis of fired clay brick incorporating palm kernel

- shell for alternative raw materials. Constr. Build. Mater. **376**, 131032 (2023).
- DOI: https://doi.org/10.1016/j.conbuildmat.2023.131032
- [45] M. Hussain, L.D. Tufa, S. Yusup, H. Zabiri, Thermochemical behavior and characterization of palm kernel shell via TGA/DTG technique. Mater. Today Proc. 16, 1901-1908 (2019).
- [46] P.P. Ikubanni, M. Oki, A.A. Adeleke, A.A. Adediran, O.S. Adesina, Influence of temperature on the chemical compositions and microstructural changes of ash formed from palm kernel shell. Results Eng. 8, 100173 (2020).
 - DOI: https://doi.org/10.1016/j.rineng.2020.100173
- [47] H.A. Umar, S.A. Sulaiman, M.A.B.M. Said, R.K. Ahmad, Palm Kernel Shell as Potential Fuel for Syngas Production BT - Advances in Manufacturing Engineering. In: S.S. Emamian, M. Awang, F. Yusof (Eds.), Springer Singapore, Singapore, 2020: pp. 263-273.
- [48] O.M. Ikumapayi, E.T. Akinlabi, Image Segmentation and Grain Size Measurements of Palm Kernel Shell Powder BT - Advances in Material Sciences and Engineering. In: M. Awang, S.S. Emamian, F. Yusof (Eds.), Springer Singapore, Singapore, 2020: pp. 265-274.
- [49] L. Novita, I. Idris, Effectiveness of silica gel from palm kernel shell ash as a moisture absorber of bottle packaging medicine. IOP Conf. Ser. Earth Environ. Sci. 1041, 12044 (2022). DOI: https://doi.org/10.1088/1755-1315/1041/1/012044
- [50] M. Lopez-Arias, C. Moro, V. Francioso, H.H. Elgaali, M. Velay-Lizancos, Effect of nanomodification of cement pastes on the CO2 uptake rate. Constr. Build. Mater. 404, 133165 (2023). DOI: https://doi.org/10.1016/j.conbuildmat.2023.133165
- [51] E. John, B. Lothenbach, Cement hydration mechanisms through time a review. J. Mater. Sci. 58, 9805-9833 (2023).
 DOI: https://doi.org/10.1007/s10853-023-08651-9
- [52] D.P. Bentz, F. Zunino, D. Lootens, Chemical vs. Physical Acceleration of Cement Hydration., Concr. Int. Des. Constr. 38,37–44 (2016).
- [53] A. Naghizadeh, S.O. Ekolu, L.N. Tchadjie, F. Solomon, Long-term strength development and durability index quality of ambientcured fly ash geopolymer concretes. Constr. Build. Mater. 374, 130899 (2023).
 - DOI: https://doi.org/10.1016/j.conbuildmat.2023.130899
- [54] S. Gao, J. Guo, Y. Gong, S. Ban, A. Liu, Study on the penetration and diffusion of chloride ions in interface transition zone of recycled concrete prepared by modified recycled coarse aggregates. Case Stud. Constr. Mater. 16, e01034 (2022). DOI: https://doi.org/10.1016/j.cscm.2022.e01034
- [55] X. Pang, L. Sun, F. Sun, G. Zhang, S. Guo, Y. Bu, Cement hydration kinetics study in the temperature range from 15°C to 95°C. Cem. Concr. Res. 148, 106552 (2021).
 DOI: https://doi.org/10.1016/j.cemconres.2021.106552
- [56] H. Choi, M. Inoue, H. Choi, M. Lim, J. Kim, Effects of Nitrite/ Nitrate-Based Accelerators on Strength and Deformation of Cementitious Repair Materials under Low-Temperature Conditions. Materials (Basel). 16, 2632 (2023).
- [57] N.T. Todd, P. Suraneni, W.J. Weiss, Hydration of cement pastes containing accelerator at various temperatures: Application to high

- early strength pavement patching. Adv. Civ. Eng. Mater. **6**, 23-37 (2017).
- [58] T. Dorn, O. Blask, D. Stephan, Acceleration of cement hydration A review of the working mechanisms, effects on setting time, and compressive strength development of accelerating admixtures. Constr. Build. Mater. 323, 126554 (2022).
 DOI: https://doi.org/10.1016/j.conbuildmat.2022.126554
- [59] L. Huang, L. Tang, I. Löfgren, N. Olsson, A. Babaahmadi, O. Esping, Y. Li, Z. Yang, Non-destructive test system to monitor hydration and strength development of low CO2 concrete. Constr. Build. Mater. 408, 133774 (2023). DOI: https://doi.org/10.1016/j.conbuildmat.2023.133774
- [60] M. Nodehi, T. Ozbakkaloglu, A. Gholampour, Effect of supplementary cementitious materials on properties of 3D printed conventional and alkali-activated concrete: A review. Autom. Constr. 138, 104215 (2022).
 DOI: https://doi.org/10.1016/j.autcon.2022.104215
- [61] J.H. Ideker, K.L. Scrivener, H. Fryda, B. Touzo, 12 Calcium Aluminate Cements. In: P.C. Hewlett, M.B.T.-L.C. of C. and C. (Fifth E. Liska (Eds.), Butterworth-Heinemann, 2019: pp. 537–584.
- [62] C.C. Bungau, T. Bungau, I.F. Prada, M.F. Prada, Green Buildings as a Necessity for Sustainable Environment Development: Dilemmas and Challenges. Sustainability **14** (2022).

DOI: https://doi.org//10.1016/B978-0-08-100773-0.00012-5

- DOI: https://doi.org/10.3390/su142013121
- [63] X. Pang, L. Sun, M. Chen, M. Xian, G. Cheng, Y. Liu, J. Qin, Influence of curing temperature on the hydration and strength development of Class G Portland cement. Cem. Concr. Res. 156, 106776 (2022).
 - DOI: https://doi.org/10.1016/j.cemconres.2022.106776
- [64] F. Deschner, B. Lothenbach, F. Winnefeld, J. Neubauer, Effect of temperature on the hydration of Portland cement blended with siliceous fly ash. Cem. Concr. Res. **52**, 169-181 (2013).
- [65] J. Zhang, E.A. Weissinger, S. Peethamparan, G.W. Scherer, Early hydration and setting of oil well cement. Cem. Concr. Res. 40, 1023-1033 (2010).
- [66] X. Pang, W. Cuello Jimenez, J. Singh, Measuring and modeling cement hydration kinetics at variable temperature conditions. Constr. Build. Mater. 262, 120788 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2020.120788
- [67] F. Han, Z. Zhang, D. Wang, P. Yan, Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures. Thermochim. Acta 605, 43-51 (2015). DOI: https://doi.org/10.1016/j.tca.2015.02.018
- [68] M. Gołaszewska, B. Klemczak, J. Gołaszewski, Thermal Properties of Calcium Sulphoaluminate Cement as an Alternative to Ordinary Portland Cement. Materials (Basel). 14 (2021). DOI: https://doi.org/10.3390/ma14227011
- [69] L. Liu, P. Yang, C. Qi, B. Zhang, L. Guo, K.-I. Song, An experimental study on the early-age hydration kinetics of cemented paste backfill. Constr. Build. Mater. 212, 283-294 (2019).
 DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.322
- [70] L. Soriano, J. Monzó, M. Bonilla, M.M. Tashima, J. Payá, M.V. Borrachero, Effect of pozzolans on the hydration process of

- Portland cement cured at low temperatures. Cem. Concr. Compos. **42**, 41-48 (2013).
- [71] K. Appiadu-Boakye, K. Yeboah, K. Boateng, M. Bukari, The use of palm kernel shell ash as cement replacement in concrete. In: Proc. West Africa Built Environ. Res. Conf., 2019: pp. 5-7.
- [72] D.M.O. Alao, Investigation of Performance of Lime Treated Palm Kernel Shell and Sugarcane Bagasse Ash as Partial Replacements of Coarse Aggregate and Cement Respectively. In: Concrete, (2018).
- [73] M. Amare, S. Swara, M. Haish, A.K. Pani, P. Saha, Performance of agro-wastes and chemical admixtures used in concrete: A review. Mater. Today Proc. (2023).
- [74] K.M. Shelote, A. Bala, S. Gupta, An overview of mechanical, permeability, and thermal properties of silica fume concrete using bibliographic survey and building information modelling. Constr. Build. Mater. 385, 131489 (2023).
- [75] N. Sathiparan, D.N. Subramaniam, Sustainable Pervious Concrete with Silica Fume as Cement Replacement: A Review. Transp. Res. Rec. 03611981241265852 (2024).
- [76] J. Zhang, J. Wang, W. Li, Q. Yuan, Y. Gao, A micromechanical investigation of cement paste through a combination of the X-ray computed tomography and the phase field method. J. Build. Eng. 84, 108449 (2024).
 - DOI: https://doi.org/10.1016/j.jobe.2024.108449
- [77] E.-C. Tsardaka, K. Sougioultzi, A. Konstantinidis, M. Stefanidou, Interpreting the setting time of cement pastes for modelling mechanical properties. Case Stud. Constr. Mater. 19, e02364 (2023). DOI: https://doi.org/10.1016/j.cscm.2023.e02364
- [78] S. Hoeun, F. Bernard, F. Grondin, S. Kamali-Bernard, S.Y. Alam, Elastic constants of nano-scale hydrated cement paste composites using reactive molecular dynamics simulations to homogenization of hardened cement paste mechanical properties. Mater. Today Commun. 36, 106671 (2023). DOI: https://doi.org/10.1016/j.mtcomm.2023.106671
- [79] A.M. Harrisson, 4 Constitution and Specification of Portland Cement, in: P.C. Hewlett, M.B.T.-L.C. of C. and C. (Fifth E. Liska (Eds.), Butterworth-Heinemann, 2019: pp. 87-155. DOI: https://doi.org/10.1016/B978-0-08-100773-0.00004-6
- [80] M. Ayub, M.H.D. Othman, I.U. Khan, S.K. Hubadillah, T.A. Kurniawan, A.F. Ismail, M.A. Rahman, J. Jaafar, Promoting sustain-

- able cleaner production paradigms in palm oil fuel ash as an eco-friendly cementitious material: A critical analysis. J. Clean. Prod. **295**, 126296 (2021).

 DOI: https://doi.org/10.1016/j.jclepro.2021.126296
- [81] B.S. Thomas, S. Kumar, H.S. Arel, Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material A review. Renew. Sustain. Energy Rev. 80, 550-561 (2017).
- [82] A.A. Bahraq, M.A. Al-Osta, O.S. Baghabra Al-Amoudi, I.B. Obot, M. Maslehuddin, H.-R. Ahmed, T.A. Saleh, Molecular Simulation of Cement-Based Materials and Their Properties. Engineering 15, 165-178 (2022). DOI: https://doi.org/10.1016/j.eng.2021.06.023
- [83] M.N. Amin, W. Ahmad, K. Khan, M.N. Al-Hashem, A.F. Deifalla, A. Ahmad, Testing and modeling methods to experiment the flexural performance of cement mortar modified with eggshell powder. Case Stud. Constr. Mater. 18, e01759 (2023). DOI: https://doi.org/10.1016/j.cscm.2022.e01759
- [84] V. Starinieri, D.C. Hughes, C. Gosselin, D. Wilk, K. Bayer, Prehydration as a technique for the retardation of Roman cement mortars. Cem. Concr. Res. 46, 1-13 (2013).
 DOI: https://doi.org/10.1016/j.cemconres.2013.01.004
- [85] B. Łaźniewska-Piekarczyk, The influence of chemical admixtures on cement hydration and mixture properties of very high performance self-compacting concrete. Constr. Build. Mater. 49, 643-662 (2013).
 - DOI: https://doi.org/10.1016/j.conbuildmat.2013.07.072
- [86] S. Deeba, A.K. Ammasi, State-of-the-art review on self-healing in mortar, concrete, and composites. Case Stud. Constr. Mater. 20, e03298 (2024). DOI: https://doi.org/10.1016/j.cscm.2024.e03298
- [87] M.M. Meraz, N.J. Mim, M.T. Mehedi, B. Bhattacharya, M.R. Aftab, M.M. Billah, M.M. Meraz, Self-healing concrete: Fabrication, advancement, and effectiveness for long-term integrity of concrete infrastructures. Alexandria Eng. J. 73, 665-694 (2023).
- [88] T.K. Pandiyan, E. Solaiyan, Sustainable Valorization of Jarosite as a Concrete Material Investigation of Hydration, Mechanical, and Durability Properties. J. Sustain. Metall. 1-24 (2024).
- [89] X. Zhang, W. Wang, Y. Zhang, X. Gu, Research on hydration characteristics of OSR-GGBFS-FA alkali-activated materials. Constr. Build. Mater. 411, 134321 (2024).