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RESEARCH ON YIELD STRENGTH ANOMALY AND ADAPTIVE CONSTITUTIVE MODEL
OF INCONEL 718 SUPERALLOY

This paper investigated the yield strength anomaly (YSA) in Inconel 718 superalloy through tensile and microstructure experi-
ments. The study analyzed the flow behavior, examined fracture morphology, discussed dislocation distribution, and developed an
adaptive constitutive model. Results show that both intermediate temperature brittleness and YSA occur at 700-800°C and strain
rates of 0.01-1 s™'. This phenomenon is attributed to the influence of the intensity and content of the y’ phase on dislocation slip,
reflecting the Kear-Wilsdorf locking mechanism. In addition, the fracture characteristics and dislocation distribution vary with
temperature and strain rate. The modified Johnson-Cook model effectively predicts yield strength and plastic deformation, with
advantages in wide temperature applicability (25-1000°C) and explicit YSA incorporation.
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1. Introduction

Nickel-based superalloys can work for a long time under
a high temperature of 600°C and some stress. Their structural
composition and mechanical properties remain stable at tem-
peratures below this threshold [1-3]. As a result, nickel-based
superalloys are primarily used in high-temperature operating
applications, such as airplane engines and nuclear reactors [4,5].
Given their stringent property requirements, research into the
material properties of these superalloys is essential.

In practical production, temperature variation is unavoid-
able during the continuous deformation process of nickel-based
superalloys. Some scholars conducted tensile experiments and
identified two significant characteristics: intermediate tem-
perature brittleness (ITB) and yield strength anomaly (YSA).
For instance, Sheng et al. [6] found these phenomena at 760
and 700°C in IN792 superalloy. It indicates that the mechanical
properties of nickel-based superalloys are susceptible to tem-
perature. Additionally, superalloys are prone to brittle fracture
during actual plastic deformation. Therefore, it is worthwhile to
study the impact of temperature on the properties of superalloys.
Scholars have engaged in extensive discussions regarding the
causes of ITB and YSA in metallic materials, including the glide
of dissociated super dislocations [7] and the transformation of
the interaction between dislocations and y’ phase [8].

Some scholars have used classical constitutive models
for metallic materials to predict the properties of nickel-based
superalloys. For example, Huang et al. [9] refined the classi-
cal Johnson-Cook (JC) constitutive model to forecast the flow
behavior of IN718 at 400~600°C and 10*~107 s™'. Li et al.
[10] developed a JC and Hensel Spitzel (HS) combined model
to predict the flow behavior of GH3230 at 850~1000°C and
0.001~0.2 s”!. Xu et al. [11] adopted a piecewise model based
on Arrhenius-type equations to describe the flow behavior of
IN750H at 720~780°C. Most of the reported models for nickel-
based superalloys are limited to a narrow temperature range,
primarily focusing on moderate or high temperatures. Further-
more, the YSA observed during tensile experiments belongs to
test uncertainty rather than inherent properties of the material
[12]. Consequently, the classical constitutive models seldom
give adequate consideration to the YSA.

This paper presents a comprehensive study of YSA and de-
velops a material constitutive model tailored for this characteris-
tic. A series of tensile experiments were conducted to investigate
the effects of temperature and strain rate on mechanical proper-
ties. Morphological analysis helps to understand the formation of
the ITB and YSA. Performance research laid the foundation for
the construction of the material model. The resulting model can
predict the mechanical properties of the Inconel 718 superalloy in
awide temperature range while adequately considering the YSA.
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2. Experiments

The research materials utilized in this study are hot-rolled
Inconel 718 superalloy sheets due to their representative mi-
crostructure and mechanical properties that closely resemble
industrial processing conditions. The initial microstructure
features equiaxed austenite grains with an average grain size of
22.35 pum, as shown in Fig. 1a. The EDS map in Fig. 1b shows
that its chemical component (wt.%) is 52.0Ni-17.2Cr-2.9Mo-
5.1Cb (Nb) -1.00Ti-0.50A1-17.3Fe.

Given the stable performance characteristics of Inconel 718
superalloy below 600°C, tensile experiments are conducted at
temperatures of 25 (room temperature, RT), 600, 700, 750, 800,
900, and 1000°C, utilizing strain rates of 0.01, 0.1, and 1 s
In Fig. 2a, the hot tensile experiments select standard specimens
with a thickness of 3 mm and a gauge length of 35 mm, performed
on a Gleeble 3800 thermal simulation testing machine. The
testing parameters include a heating rate of 100°C/s, a holding
time of 1 minute, and water cooling. In Fig. 2b, the RT tensile
experiments select specimens with a thickness of 1 mm and
a gauge length of 16 mm, performed on a WDW-10H universal
testing machine. The fracture morphology is observed using
ZEISS scanning electron microscopy (SEM). The distribution of
dislocations is observed using JEM-F200 transmission electron
microscopy (TEM). The constitutive model commonly adopts
and modifies the JC model.

3. Results and discussion

This paper investigates the hot tensile properties, focusing
on mechanical properties (section 3.1) and fracture behavior
(section 3.2). In addition, section 3.3 presents a material model
constructed based on the mechanical properties to predict flow
behavior.

3.1. Mechanical properties

The stress-strain curves typically exhibit distinct stages:
the work hardening stage (WH stage), transition stage, soften-
ing stage, and fracture stage. As shown in Fig. 3a, temperature
significantly influences the flow behavior. In the first temperature
stage (25~700°C), the temperature has little effect on mechanical
properties, reflected in the constant yield strength and sudden
fracture. In the second temperature stage (750~800°C), the curves
in the necking and softening stages become increasingly notice-
able. In the third temperature stage (900~1000°C), the curves
in the transition and softening stages gradually flatten, with
noticeable local necking. Therefore, the effect of work hardening
(WH) weakens with increasing temperature, while the effects of
dynamic recovery (DRV) and dynamic recrystallization (DRX)
increase [13]. Moreover, yield strength increases with strain rate,
although the effect varies at different temperatures, as shown in
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Fig. 1. Initial microstructure and EDS area scan map of hot-rolled Inconel 718 superalloy: (a) initial microstructure; (b) EDS area scan map
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Fig. 2. the specimens for hot tensile and RT tensile experiments: (a) hot tension; (b) RT tension
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Fig. 3. A series of mechanical performance curves: (a) stress-strain curves at 0.01 s™'; (b) stress-strain curves at 600~1000°C and 0.01~1 s'; (c)
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Fig. 3b. Therefore, there is a coupling effect among plastic strain,
strain rate, and temperature. As the temperature increases, the
temperature softening effect becomes more pronounced, while
the strain rate strengthening effect gradually weakens.

Generally, the strength of metallic materials decreases while
their plasticity increases with rising temperature and decreasing
strain rate [14]. As shown in Figs. 3¢ and 3d, the overall trends
in yield strength and reduction of area for the nickel-based
superalloy confirm this observation. However, both properties
exhibit anomalous variations at 700-800°C, corresponding to the
YSA and ITB [6-8]. Additionally, Fig. 3a indicates that the slope
of the curve in the transition stage increases with temperature
at 700~800°C.
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3.2. Fracture behavior

In the fracture morphology of Fig. 4, the specimen width
at the fracture location significantly decreases with temperature.
The fracture morphology changes sequentially from pure shear
fracture to serrated fracture to straight fracture. In micro, the
fracture mode transitions from intergranular fracture to trans-
granular fracture. Due to temperature softening, the fracture
surface evolves from a mixed ductile/brittle fracture surface to
a predominant ductile fracture surface. Additionally, the shape
and size of dimples undergo significant changes.

At 25~700°C, the fracture surface exhibits cleavage fea-
tures, voids, and small shallow dimples. The dimples consist of

(b) 600 °C /B8

Fig. 4. Macroscopic and microscopic fracture morphology under 0.01 s™' at various temperatures: (a) 25°C; (b) 600°C; (c) 700°C; (d) 750°C;

(e) 800°C; (f) 900°C; (g) 1000°C
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equiaxed dimples formed by normal stress and I-type dimples
formed by shear stress [15]. At 750~800°C, large and deep
equiaxed dimples cover the fracture surface, while the I-type
dimples and cleavages nearly disappear. At 900~1000°C, the
fracture surface shows some sintering structures. Most dimples
aggregate and even form tenacity nets. The transgranular fracture
occurs in the local area. As the temperature increases, DRV and
DRX behaviors promote further softening and improve material
plasticity [16]. This improvement in plasticity is reflected in
the changes in dimple morphology, including their formation,
growth, and aggregation.

Difference strain rates lead to variations in fracture
morphology, particularly at 800°C. At a strain rate of 0.01 s
(Fig. 4d), the fracture surface is predominantly characterized
by dimples. As the strain rate increases (Fig. 5), both the size
and quantity of dimples decrease, while cleavages emerge and
progressively increase. The decrease in material plasticity at
higher strain rates occurs because the faster deformation rate
leaves less time for plastic flow to develop [17].

3.3. Study on the causes of YSA

Plastic deformation in materials is closely related to disloca-
tion motion [18,19]. The y'phase, a strengthening phase in nickel-
based superalloys, has a face-centered cubic structure [20] and a
slip system of <110>{111} [21]. The precipitation and dissolution
temperatures of the y’ phase are approximately 593 and 843°C,
respectively [22]. At 600°C (Fig. 6a), the y' phase is relatively
small. Some dislocations cut through y'phase. At 800°C (Fig. 6b),
the y’' phase reaches its maximum precipitation, characterized by
large size, high content, and narrow spacing. Due to the intensity
ofthe y' phase increases with temperature [23], dislocations can-
not cut through it. Instead, dislocations undergo multiple climbs
and cross-slips within the matrix y phase, resulting in local slip
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from the {111} to {100} planes. Therefore, the YSA is mainly
attributed to the Kear-Wilsdorf (K-W) locking mechanism, which
occurs when dislocations cross-slip on non-slip crystallographic
planes [24], hindering dislocation motion. At 900°C (Fig. 6¢),
the y’ phase dissolves almost completely. Thermal activation
facilitates dislocation motion, which reduces dislocation density
and enhances the toughness of the matrix phase.

3.4. Constitutive models of hot tensile behavior

Developing a constitutive model that accurately represents
the properties of Inconel 718 superalloy is challenging. For in-
stance: (1) the YSA prevents the yield strength from decreasing
monotonically with temperature; (2) significant variations in the
softening stage are directly reflected in the slope changes of the
stress-strain curves.

Before constructing the model, convert the engineering
stress-strain data into the true one.

o=0,(1+¢,)
e=In(l+¢,)

where ¢ and o, are the true stress and engineering stress,
respectively; ¢ and ¢, are the true strain and engineering strain,
respectively.

Given the classic JC model [13] in Eq. (1), its basic formula
is A+ Be".

o=(A+Bc")1+ClngH(1-T™) (1)
where:
x & L. .

& =—, ¢ is the reference strain rate;
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Fig. 6. TEM observation and schematic diagram of dislocation distribution at different temperatures: (a) dislocations cut through the y’ phase at
600°C; (b) multiple climbing and cross-sliping at 800°C; (c¢) dislocations flow easily at 900°C



Expand Eq. (1) to obtain Eq. (2).

o= A1+ClneH)A-T"™)+B1+ClnHA-T"™)e"  (2)

In Eq. (2), the yield strength typically decreases with tem-
perature, which contradicts the YSA observed in the experiments.
Therefore, the yield strength and plastic deformation in the
constitutive model respond differently to temperature and strain
rate changes. To capture this divergence, Eq. (3) employs pa-
rameters oo(7, €) and G (T, €)e" to replace A(1+ Clné")(1—-T"™)
and B(1+ Clné")(1 — T™™)&" for precise modeling.

o =0y(T,&)+G(T,é)e" 3)

where g is the yield strength, its calculation needs to take into
account the impact of YSA; F(¢) is the basic formula for char-
acterizing the plastic deformation stage; G is the influencing
parameter in the plastic deformation stage.

3.3.1. Yield stress calculation

Inconel 718 superalloy is a precipitation-hardening superal-
loy, and its strength is primarily influenced by the precipitation
phase. Combining the K-W locking mechanism, the calculation
ofyield strength focuses on the phase precipitation and disloca-
tion motion. Cross-slip, which is highly temperature-dependent,
exhibits Gaussian distribution characteristics [25]. Eq. (4) [25]
represents the possibility of cross-slip as follows:

p=exp[D|T-Ty] “4)

where Ty, is the original temperature, with the most prominent
K-W lock and YSA, equal to 800°C; D is material parameters.

Cross-slip causes shear stress. The relationship between
shear stress and yield stress is as follows:

)

T
O'o:PE

where 7 is shear stress of cross slip; S is the Schmid factor.
Replace é with [4 + Bexp(CT)]. Combining Eq. (4) and

considering the effects of temperature and strain rate on the yield
strength, rewrite Eq. (5) as follows:
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o,(T,é)= [A +Bexp(CT)]

exp[D(£)| T - T, |](1+E(g')-T* -1ng'*) (©6)

where 4, B, C, D and E are material parameters. Due to the
coupling effect of temperature and strain rate, D and E are af-
fected by strain rate.

By fitting the experimental data, the following yield strength
expression is obtained.

o (T, &) =[0.14+17.7exp(—0.00387)]
exp[(—47.2(1n &) —389.3In & —1062) | T —800 |]
T-800 ¢ j o
13208000  0.01

(1 +(—0.07036In £ +0.268) -

Fit the yield strength-temperature (6, — 7T) curves in Fig. 7.

3.3.2. Stress calculation during the plastic
deformation stage

This section simulates the stress-strain curve during the
plastic deformation stage. In Fig. 3, the slope of stress-strain
curve during the plastic deformation stage is approximately equal
to 1 at low and intermediate temperatures, and is approximately
equal to 0 at high temperatures. The G value shows a sudden
change with temperature. Therefore, the S-shaped growth func-
tion (Eq. (8)) is more suitable for expressing the slope than
(1+ Clné")(1 — T™™). Fit Eq. (3) as follows:

a

G(T,é)=— 9 8

(7€) 1+exp[k(T—TC)] ®

G(T.¢) = 100 . ©)
1+exp[-0.02(T —900—70-In&/1n10)]

n=27+0.1-Ing/In10-0.0024-T (n<1) (10)

The fitting curve in Fig. 8 demonstrates that the model can
accurately predict the actual stress-strain curve of Inconel 718
superalloy. This model not only quantitatively captures the YSA,
but also illustrates the effects of temperature and strain rate on
plastic deformation characteristics.
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Fig. 7. Fitting diagram of stress-temperature (o, — T) curves at various strain rates: (a) ¢ = 0.01 s/ ; (b)) é=0.1s";(c)é=15s"
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