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PHASE STABILITY AND INVERSE HALL-PETCH EFFECT OF SEVERELY DEFORMED
AND ANNEALED CrMnFeCoNi HIGH-ENTROPY ALLOY

The reverse phase transition from hexagonal close-packed (/cp) to face-centered cubic (fcc) was studied using diffraction of
high-energy synchrotron radiation and hardness measurements on the CrMnFeCoNi high-entropy alloy deformed by high-pressure
torsion (HPT) at 77 K under 10 GPa quasi-hydrostatic pressure. Cryogenic HPT leads to a nanocrystalline structure and induces a phase
transition from fcc to scp. To determine the stability of the scp phase the material was annealed at temperatures between 473 K and
973 K for 2 h. Annealing initially results in the reverse transition to the fcc phase, followed by precipitation of body-centered cubic
(bce), fee and then tetragonal particles. The volume fractions of particular phases over the entire temperature range were calculated
using Rietveld refinement. During annealing the reverse phase transformation takes place along with grain growth and reduction
in dislocation density, surprisingly leading to an increase in hardness. This phenomenon indicates an inverse Hall-Petch effect.
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1. Introduction

The equiatomic CrMnFeCoNi high-entropy alloy (HEA),
so-called Cantor alloy, is a prototype for multicomponent face-
centered cubic (fcc) single-phase solid solution alloys [1-4].
It has attracted a lot of interest due to its excellent ductility and
high fracture toughness [5]. The low stacking fault energy of the
Cantor alloy [6,7] gives rise to massive mechanical twinning at
low temperatures which accounts for the excellent combination
of strength and ductility. Moreover, this alloy shows a strong tem-
perature dependence of strength below 473 K, while it is weak
at elevated temperatures. Due to a high work-hardening rate
at low temperatures, large plastic stability occurs reducing the
growth rate of necking. Thus, this HEA is suitable for broad
applications at cryogenic temperatures [8].

By applying hydrostatic pressure at room temperature
(RT), the fcc Cantor alloy is transformed into the hexagonal
close-packed (/cp) structure, which is also called e-martensite by
analogy to hexaferrum (e-Fe) [9-12]. As demonstrated in previ-
ous studies [13-16], the transformation can be driven by shear

deformation and temperature, with the fraction of the e-phase
increasing with increasing hydrostatic pressure and decreasing
deformation temperature. These results are consistent with ab
initio calculations and show that the /cp phase is energetically
favored at low temperatures [17]. In general, the scp phase in-
troduces an additional deformation mode in the form of phase
transformation (besides slip and twinning) which improves
the formability of this alloy. On the other hand, it makes the
microstructure more complex, surprisingly decreasing the RT
strength of the material in the nanocrystalline (nc) state [13-16].
However, there is much less consensus about the stability of the
stress-induced Acp phase at high temperatures especially for the
nc material. For example, a sample deformed at 77 K by HPT
at 10 GPa and stored at RT for 1 month exhibits a volume fraction
ofthe hcp phase of 85% [15]. After storage of this sample for two
years, the volume fraction of the /cp phase is reduced to about
67%, which is about the level of long-term storage [15]. Struc-
turally, it appears that storage of the severely deformed Cantor
alloy containing mainly the 4cp phase leads to the reconversion
to the fcc phase. This can be caused by self-annealing even at RT
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since the HPT-deformed samples are severely deformed. It may
also indicate that the /cp phase becomes unstable at ambient
conditions and transforms back to the fcc phase. Therefore, the
present work aims to investigate the stability of the icp phase
in a strongly deformed Cantor alloy subjected to HPT at 77 K
under 10 GPa quasi-hydrostatic pressure and stored for 1 year
at RT. This starting material contains a volume fraction of 68%
hep phase. To enhance the kinetics of the reverse transformation,
the HPT-deformed sample was annealed for 2 h at temperatures
between 473 K and 973 K. In order to gain a more comprehensive
understanding of the stability of the 4cp phase, the sample that
was stored for only one month at RT and contains the highest
volume fraction of the scp phase is also included in the analysis.
To distinguish this sample from the one stored for one year, it will
be referred to as “77 K” because it is assumed to approximately
represent the state after cryogenic deformation and pressure re-
lease. Additionally, Vickers microhardness measurements were
performed to study the mechanical resistance of the annealed
samples as a function of grain size and phase constitution.

2. Experimental details

Details of the synthesis of the equiatomic CrMnFeCoNi
HEA are given in [14]. For HPT deformation, discs with a di-
ameter of 8 mm and an initial thickness of about 0.8 mm were
cut from the cast and homogenized ingots. A quasi-hydrostatic
pressure of 7.8 GPa was used at 77 K to deform the sample with
a speed of 0.2 rotations/min, up to 5 rotations. More details re-
garding the HPT process at 77 K of the Cantor alloy are provided
in[18]. Since upon HPT the shear strain changes along the radius,

the samples for annealing were cut equidistant with respect to
the radius to maintain a comparable magnitude of shear strain
for all samples, about 90 &+ 10. Annealing was done in a quartz
ampoule under a vacuum of 107> Torr. Phase analysis was per-
formed at RT employing high-energy synchrotron diffraction in
the transmission mode at beamline P0O7B of DESY, Hamburg,
Germany, using a 2D Marview detector and High Score software
[20,21]. In order to get rid of texture effects, the measurements
were performed using a continuous rotation by 180° along the
longest axis of the sample pin cut along the radial direction.
Such a procedure allows meeting the Bragg condition for all
planes and recording all reflections on one single image plate.
The obtained data were reduced by integrating the intensity of
each point in the 2 theta/intensity plots. It is worth mentioning
that this procedure enables to receive “quasi” powder diffrac-
tion data for bulk polycrystalline samples without the need for
powder milling. This significantly increases the accuracy of
the calculations for Rietveld refinement. The grain size was
estimated by the Scherrer equation using X-ray graphs including
peak position and FWHM. For the fcc phase, the (200),.. peak
is taken since it is the only peak which does not overlap with
peaks belonging to the Acp phase. In the case of the Acp phase,
the (101) peak was used.

Vickers micro-hardness measurements were conducted with
a Struers microhardness tester with a load of 50 gf.

3. Results and Discussion

Fig. 1 shows diffraction patterns taken for the Cantor alloy
subjected to HPT at 77 K, stored after deformation at RT for
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Fig. 1. X-ray diffraction patterns for the HEA sample HPT-deformed at 77 K and stored at RT for 1 month and 1 year. The latter was annealed
for 2 h at different temperatures



1 month and 1 year. The latter was annealed for 2 h at higher
temperatures. The sample stored at RT for one 1 year was used
to check the long-term stability of the Acp phase at ambient
temperature. Such a long time allows reaching the lower limit in
terms of the volume fraction of the icp phase at RT. The applica-
tion of a quasi-hydrostatic pressure at 77 K transforms the HEA
sample to the scp phase with a volume fraction of 85%. However,
storage of such a deformed sample at RT for one year leads to
back transformation to fcc, reducing the amount of Zcp to 68%.
Raising the temperature to 473 K for 2 h, the Acp phase is further
reduced to 49%. Eventually, the icp phase disappears at 773 K
and is replaced by fcc and body-centered cubic (bcc) precipitates.

Interestingly, the crystal structure of the fcc precipitates
differs significantly in lattice parameter from the fcc HEA ma-
trix indicating a different chemical composition and therefore is
outlined with the number 2 in Fig. 1 for reference. At higher tem-
peratures, a tetragonal complex CrFe-rich phase (a = 8.6283 A,
¢ = 4.5542 A) precipitates with the largest tendency at 873 K
[4,22-24]. As reported in [25] this structure originates from the
bcce phase with almost the same composition but a different
crystal structure. The phase transformations and the evolution
of individual phases with regard to their volume fractions are
presented in Fig. 2. As can be seen the volume fraction of the Acp
phase decreases upon annealing for the combinations of times
and temperatures chosen. The Acp phase is present up to about
673 K and thereafter the HEA decomposes into two phases, one
with fee structure and lattice parameter 3.7082 A and the other
with bec structure and lattice parameter 2.8723 A. At the highest
temperatures, the so-called sigma phase precipitates, however,
contradictory to some reports its volume fraction decreases with
increasing temperature [22-25]. This effect can be related to the
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severely deformed material with nano grain size and can take
longer in coarse-grained material [26].

The average grain size estimated by the Scherrer equation
according to peak broadening for fcc and hcp phases is shown in
Fig. 3. As expected the grain size of the fcc phase increases with
increasing annealing temperature. Grain growth at low annealing
temperatures is quite slow, with an increase in average grain size
from about 30 nm at RT to about 60 nm at 673 K. Above 673 K
significant grain growth takes place with an increase in the aver-
age grain size from about 60 nm to about 180 nm in the material
annealed at 973 K for 2 h. It should be mentioned that only the
(200) reflection for the fcc matrix was used for calculation. On the
other hand, the (101) 4cp peak was used to calculate the average
grain size of the 4cp phase. However, unlike the fcc phase, the
grain size of Acp is rather stable showing even a small tendency
to decrease with increasing annealing temperature. This effect
means that part of the larger, less stable Acp nanograins were
back transformed to fcc. Surprisingly, the strength of the material
increases with increasing grain size of the fcc phase indicating
an inverse Hall-Petch effect [27]. Fig. 4 presents the microhard-
ness as a function of annealing temperature. The microhardness
increases with grain size of the fcc phase reaching saturation at
about 75 nm. Moreover, the lower the annealing temperature the
larger the scatter of the microhardness which indicates a more
heterogeneous microstructure within the fcc + hcp region. Yet
despite the large scatter and complex microstructure incorporat-
ing a number of different precipitates, a noticeable trend can
be observed for grain size softening, which is based on grain/
interphase boundary sliding. The interphase boundary sliding can
also be described by the shuffle mechanism commonly observed
in hcp metals [28]. An additional reason discussed for anneal-
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Fig. 2. Volume fraction of certain phases as a function of annealing temperature, calculated using the Rietveld refinement
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Fig. 4. Microhardness as a function of fcc grain size for a sample HPT-deformed at 77 K, stored at RT and subsequently annealed at different

temperatures

hardening of nc materials is relaxation of the grain boundaries
from a non-equilibrium to an equilibrium state, which makes the
emission and absorption of dislocations from/in grain boundaries
more difficult and therefore leads to hardening [29-31]. However,
this effect can only be verified in materials where grain coarsen-
ing can be suppressed during annealing.

After exceeding 75 nm the microhardness reaches satura-
tion even though the small particles should further increase the
strength of the alloy. Thus, for grain sizes between 75 nm and
180 nm, two contrasting processes affect the strength. The first
is the classic Hall-Petch effect which decreases the strength
due to increasing grain size of the fcc phase and the second is



hardening due to fcc, bee and tetragonal precipitates. However,
to quantitatively separate the two, nanohardness measurements
and TEM/EDS observations are required.

4. Conclusions

The phase stability of a nc CrMnFeCoNi HEA produced
by HPT at cryogenic temperature was studied using diffraction
of high-energy synchrotron radiation and hardness measure-
ments. The initial HPT-deformed material exhibits a two-phase
microstructure with a dominating 4cp and minor fcc phase and
an average grain size of about 40 and 30 nm, respectively. Dur-
ing annealing the reverse transformation of the /4cp phase to
fcc takes place. The hcp phase completely disappears at 773 K,
while at above this temperature bcc, fce and tetragonal phases
begin to precipitate. The Rietveld analysis shows the develop-
ment of certain phases and their volume fractions over a broad
temperature range. The lower the annealing temperature the
larger the scatter of the microhardness which indicates a more
heterogeneous microstructure within the fcc + Acp region. This
effect is not observed when small precipitations form. The es-
timated grain sizes along with hardness measurements indicate
an inverse Hall-Petch effect based on grain/interphase boundary
sliding. Interphase boundary sliding seems to be comparable or
even easier than grain boundary sliding in the fcc and Acp phase.
Future work will involve direct confirmation of the X-ray dif-
fraction results through TEM/SEM observations.
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