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Structural Stability and GlaSS-ForminG ability oF Fe74b20nb2Hf2Si2:  
tHe role oF coolinG rate

This study investigates the effect of cooling rate on the glass transition behavior of the fe74B20nb2hf2Si2 soft magnetic amor-
phous alloy. Rectangular samples with two different dimensions, 70.0 mm × 1.0 mm × 1.0 mm, and 50.0 mm × 30.0 mm × 0.5 mm, 
were prepared and analyzed using X-ray diffraction (XRd) and differential scanning calorimetry (dSC). XRd results confirmed the 
amorphous nature of the alloy, evidenced by a broad peak in the 2θ range of 35-50°. The glass-forming ability (Gfa) parameters, 
including ΔTx = Tx – Tg and Trx = Tx /Tg, were derived from dSC curves, where Tg represents the glass transition temperature and 
Tx denotes the crystallization onset temperature. a notable increase in ΔTx from 43 to 52 k was observed with a decreasing cooling 
rate, signifying enhanced structural stability in the sample with dimensions of 70.0 mm × 1.0 mm × 1.0 mm compared to the sam-
ple with dimensions of 50.0 mm × 30.0 mm × 0.5 mm. additionally, the sample with dimensions of 70.0 mm × 1.0 mm × 1.0 mm 
exhibited lower free volume (FV = 141.2 J/g) and heat capacity (ΔCp = 0.037 J/g. k) compared to the sample with dimension of 
50.0 mm × 30.0 mm × 0.5 mm (FV = 174.7 J/g and ΔCp = 0.145 J/g. k). These findings suggested that slower cooling rates con-
tribute to the structural stability of the amorphous alloy by minimizing defects and lowering heat capacity, potentially improving 
its performance in magnetic applications. 
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1. introduction

The improvement of glass-forming ability (Gfa) in amor-
phous alloys, particularly fe-based alloys, has become a pivotal 
focus within the field of materials science. This is largely due 
to the significant influence Gfa on the structural, thermal, and 
mechanical properties of these materials [1-4]. alloys with high 
Gfa exhibit a strong tendency to form amorphous phases, ef-
fectively preventing the formation of unwanted crystals during 
manufacturing processes [5-8]. This leads to improved thermal 
stability and resistance to temperature fluctuations. furthermore, 
alloys with optimized Gfa offer easier and more cost-effective 
production, reducing the need for complex process controls 
and minimizing manufacturing costs [9-12]. Various strategies 
have been proposed to enhance Gfa, including modifications 
to chemical composition, increasing component thickness, en-
vironmental control, and optimization of processing parameters 
[13-16]. one effective approach is increasing the thickness of the 
component, which, due to the larger volume of material, reduces 
the cooling rate and allows more time for the formation of the 
amorphous phase [17-19]. 

in this context, a soft magnetic amorphous alloy with the 
composition fe74B20nb2hf2Si2 was produced in the form of rec-
tangular samples with different dimensions of 70.0 × 1.0 × 1.0 mm 
and 50.0 × 0.5 × 0.5 mm. Then, the effect of cooling rate on the 
alloy’s Gfa was evaluated using X-ray diffraction (XRd) and 
differential scanning calorimetry (dSC) analyses.

2. experimental

The alloy with a composition of fe74B20nb2hf2Si2 (at.%) 
was prepared using high-purity elements (99.9999%) through 
vacuum arc melting in a titanium-gettered argon atmosphere. 
To ensure compositional homogeneity, the melting process 
was repeated five times. Rectangular samples with different 
dimensions were fabricated by water-cooled copper mold cast-
ing using the injection casting technique. The dimentions of 
samples were 70.0 mm × 1.0 mm × 1.0 mm for Sample a, and 
50.0 mm × 30.0 mm × 0.5 mm for Sample B.

The amorphous structure of both samples was confirmed 
through XRd analysis using a Bruker d8 diffractometer with 
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copper (Cu kα, λ = 0.15418 nm) radiation. furthermore, the 
thermal behavior of the samples was evaluated using low-
temperature dSC, performed on a netzsch dSC 214 Polyma at 
a heating rate of 20 k/min.

3. results and dscussions

The XRd pattern of both samples a and B in their as-cast 
state are presented in fig. 1. as illustrated, a broad peak is ob-
served in the 2θ range of 35 to 50°, which is characteristic of the 
amorphous nature of the samples. although Sample B exhibits 
minor low-intensity reflections around 45° and 58°, these do not 
correspond to distinct crystalline phases and could be attributed 
to short-range ordering or minor structural fluctuations. overall, 
the XRd results confirm that the predominant structure of both 
samples remains amorphous.

fig. 1. XRd patterns for both samples in the as-cast state

fig. 2 presents the dSC curves of the alloy in its as-cast state 
for both Samples a and B. The critical temperatures, including 

the glass transition temperature (Tg) and the onset of crystal-
lization temperature (Tx), were extracted from the dSC curves 
and are summarized in TaBle 1. notably, the Tg of Sample a 
(659 k) is higher than sample b (644 k). 

This difference can be attributed to the reduced cooling 
rate in Sample a, which allows more time for atomic arrange-
ments, resulting in a structure that is closer to a more ordered 
state. Consequently, this increases the energy required for the 
transition into the supercooled liquid phase. additionally, the 
reduced cooling rate enhances density and structural order, 
thereby stabilizing the amorphous phase. as a result, a higher 
Tg is observed, as more energy is needed to disrupt the ordered 
structure and transition to the liquid state [20,21].

TaBle 1

Summary of key parameters related to the Gfa  
of both samples a and B

Sample Tg (K) Tx (K) ΔTx (K) Trx FV (J/g)
a 659 711 52 1.13 141.2
b 644 687 43 1.11 174.7

The gfa parameters, including ΔTx = (Tx − Tg) and 
Trx = (Tx /Tg), are also listed in Table 1 for samples a and B. The 
data indicate that sample a exhibits higher values of ΔTx (52 k) 
and Trx (1.13), suggesting an enhanced Gfa compared to Sam-
ple B. This improvement can be attributed to the lower cooling 
rate in Sample a, which facilitates better atomic organization 
and results in increased thermal stability and higher Tx values. 
additionally, the slower cooling rate minimizes structural defects 
and enhances order within the amorphous structure, thus requir-
ing more energy to initiate crystallization [22,23]. Consequently, 
the increased gap between Tg and Tx, reflected in the higher ΔTx 
and Trx values, signifies improved stability of the amorphous 
phase and its greater resistance to crystallization.

another critical factor in evaluating Gfa is the free volume 
(FV), which can be assessed through enthalpy changes near 

fig. 2. low temperature DsC curves related to the investigated samples at a heating rate of 20 k/min
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the Tg using dSC analysis, as depicted in fig. 1. according 
to TaBle 1, the FV value for Sample a decreases from 174.7 
to 141.2 J/g compared to Sample B. This reduction in free volume 
results from the slower cooling rate in sample a, which allows 
more time for atomic organization and, consequently, reduces 
structural defects and atomic mobility [24-26].

as a result, the liquid phase becomes more stable, dimin-
ishing the driving force for crystallization. additionally, the 
decrease in free volume lowers both the entropy of fusion and 
the gibbs free energy difference (ΔGc) between the supercooled 
liquid and crystalline phases, making crystallization less prob-
able and enhancing the stability of the amorphous phase [27,28]. 
Therefore, the Gfa of Sample a is superior to that of Sample B.

in addition to the factors previously discussed, the heat 
capacity (ΔCp) at Tg is a key parameter for assessing the stability 
of the amorphous structure. The ΔCp values for Samples a and B, 
calculated using proteus software, are 0.037 and 0.145 J/g·k, 
respectively. The lower ΔCp observed in Sample a correlates 
with its reduced cooling rate and increased Gfa. 

a decreased heat capacity suggests lower atomic mobility 
near Tg, which enhances the stability of the amorphous phase 
and inhibits crystallization [29-31]. Moreover, lower ΔCp val-
ues indicate reduced entropy and increased viscosity, further 
contributing to improved Gfa. also, the decrease inactivation 
energy required to maintain the amorphous structure lowers the 
likelihood of crystallization under thermal stress [32,33]. 

at lower cooling rates, the alloy’s structure gains more time 
to organize and reduce structural defects, thereby improving the 
overall stability of the glass. Therefore, the combined effects 
of reduced heat capacity and slower cooling rates significantly 
enhance the Gfa of the amorphous alloy.

4. conclusion

This study demonstrates that the fe74B20nb2hf2Si2 
amorphous alloy exhibits superior Gfa in rectangular samples 
with different dimensions of 70.0 mm × 1.0 mm × 1.0 mm, 
and 50.0 mm × 30.0 mm × 0.5 mm. XRd analysis confirmed 
the amorphous structure in both samples, while dSC re-
sults revealed a higher Tg in the sample with dimensions of 
70.0 mm × 1.0 mm × 1.0 mm, indicating increased structural 
stability due to the slower cooling rate. The higher values of 
ΔTx and Trx in the same sample further confirm its enhanced 
thermal stability and resistance to crystallization. additionally, 
a reduction in free volume, as determined through enthalpy 
analysis, contributes to the improved Gfa by minimizing struc-
tural defects and reducing the driving force for crystallization. 
The lower ΔCp observed in the sample with dimensions of 
70.0 mm × 1.0 mm × 1.0 mm suggests decreased atomic mobility 
and higher viscosity, resulting in a more stable amorphous structure. 

These findings highlight that by controlling the cooling 
rate and optimizing the alloy’s structural characteristics, the 
Gfa of amorphous alloys can be significantly enhanced, leading 
to improved thermal stability and resistance to crystallization.
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