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Morphology Modification of Moo3 powders by hydrogen reduction  
and re-oxidation process

an optimum route to fabricate the moo3 nanoparticles with modified morphology was investigated. microstructure analysis 
for the moo3 powder prepared by high-energy ball milling process for 25 h showed that the plate-shaped raw powders are mostly 
converted into equiaxed fine particles, but exist as large agglomerates. however, the powder fabricated by the hydrogen reduction 
at 775℃ of raw powder and re-oxidation at 450℃ exhibits equiaxed fine particles with a size of about 260 nm and relatively small 
agglomerates. Additionally, the re-oxidized particles show a unimodal particle size distribution with measured values ranging from 
0.18 to 0.42 µm. These results indicated that the reduction and re-oxidation process can significantly decrease the particle size and 
modify the powder morphology into an equiaxed shape.
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1. introduction

molybdenum trioxide (moo3) has received considerable 
attention in recent years because of its potential applications in 
catalysts, electrochromic surface, gas sensor and electrodes of 
battery [1,2]. Crystalline moo3 phases exist in orthorhombic 
α-MoO3, monoclinic β-MoO3 or hexagonal structures, which 
are essentially built up of corner-sharing moo6 octahedra. The 
combination of these phases or the appropriate distribution of 
mo ions with different oxidation states can result in unique ma-
terials with superior electrical and optical properties, as well as 
non-toxicity, cost-effectiveness, and good chemical stability [3]. 
In this field, the interest in the synthesis of nano-sized MoO3 
particles is emphasized

Several processes have been developed to synthesize MoO3 
nanoparticles with specific morphology, size and crystal structure 
using various synthesis techniques such as sol-gel, solution com-
bustion, hydrothermal synthesis and chemical vapor deposition 
[4-6]. However, most of the synthesized MoO3 particles have 
a unique agglomerated and layered structure along a specific 
crystallographic direction. motivated by an interest in mor-
phology modification, we focus on the preparation of equiaxed 
moo3 nanoparticles via high-energy ball milling or reduction/
re-oxidation routes using commercial powder. in addition,  

the dependence of the particle characteristics on fabrication 
process is discussed.

2. Materials and methods

Commercial moo3 powder (99.9%, <5 μm, Kojundo) was 
used as starting material. Two different processes were applied 
to modify the powder morphology and particle size. In the first 
method, the milling of moo3 powder was carried out in a plan-
etary ball mill with a ball-to-powder weight ratio of 15:1 up to 
25 h. The ball and jar were made of stainless steel. The second 
used a hydrogen reduction and re-oxidation process of the raw 
powder. Reduction was performed in a hydrogen atmosphere 
(purity 99.999%) for 2 h by heating to 775°C at a heating rate 
of 5°C/min, and the reduced powder was re-oxidized in air at 
450°C and 550°C for 5 h, respectively.

Phase identification of the powders was carried out by 
X-ray diffraction (XRD, Dmax 2500, Rigaku) analysis. The 
powder morphology was examined using field-emission scan-
ning electron microscopy (FE-SEM, JSM-6700F, JEOL). Size 
distributions of powders were measured by dynamic light scat-
tering using nano SAQLA (Otsuka Denshi).
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3. results and discussion

high-energy ball milling of commercial moo3 powder was 
carried out to modify its morphology and size. Fig. 1 shows typi-
cal morphology of the raw powder and the powders ball-milled 
for 2 and 25 h, respectively. as can be clearly seen in the SEm 
images, the plate-shaped raw powders due to a layered struc-
ture of moo3 crystal were changed into an equiaxed powders 
with a reduced size through ball milling. However, as shown 

in Fig. 1(b) and (c), particles with plate shape were observed 
in the case of milling for 2 h, and they still existed even when 
the milling time was increased to 25 h. To solve the limitations 
of controlling the powder shape in the ball milling process, 
reduction and re-oxidation processes were attempted.

Fig. 2(a) and (b) show SEm images of raw powder reduced 
by hydrogen at 775°C and re-oxidized at 550°C, respectively. The 
reduced powders had an equiaxed shape with smaller particle size 
than the raw powder and formed some agglomerates. addition-

Fig. 1. SEm morphologies of moo3 powder: (a) raw, (b) ball-milled for 2 h and (c) ball-milled for 25 h

Fig. 2. SEm images of moo3 powders at different stages of processing; (a) after hydrogen reduction at 775°C for 2 h and (b) re-oxidation at 550°C 
for 5 h in air
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ally, XRD analysis in Fig. 3(b) reveals that the reduced powder 
was composed entirely of mo phase without any unreduced 
phase. It is generally known that hydrogen reduction of MoO3 
proceeds in two stages: moo3→MoO2 in the temperature range 
of 350-600℃, and MoO2→Mo in 600-800℃ [7]. Additionally, 
it has been reported that increasing hydrogen concentration in 
a reducing atmosphere and high-temperature reduction helps in 
the refinement of reduced particles and formation of equiaxed 
particles due to the direct reduction of moo3 to metallic mo 
and the increase in nucleation rate [8,9]. Therefore, the forma-
tion of agglomerates composed of mo nanoparticles shown 
in Fig. 2(a) can be interpreted as being due to the neck growth 
caused by a relatively high reduction temperature and the use 
of a high-purity hydrogen atmosphere, which are the conditions 
of this experiment.

To fabricate shape-modified moo3 powder, the reduced mo 
was thermally re-oxidized by annealing in air at 550℃. As shown 
in Fig. 2(b), the re-oxidized particles were mainly equiaxed and 
partially plate-shaped. Considering the reported literature that 
α-MoO3 can be formed by annealing Mo thin film in air at 400℃ 
[10], the observed particles are considered to be MoO3 phase. 
However, because the re-oxidized powder in Fig. 2(b) showed 

relatively coarse particles and agglomerates, re-oxidation at low 
temperature was attempted for refinement of particles.

Fig. 3(a) shows typical microstructure of moo3 powder 
re-oxidized at 450℃ in air for 5 h. Comparison with the pow-
der re-oxidized at 550℃ in Fig. 2(b) indicated that the marked 
refinement of particles and agglomerates can be achieved by 
re-oxidation at 450℃. As clearly seen in magnified image of 
Fig. 3(a), fine particles of about 260 nm in size were observed 
in the re-oxidized powder. Meanwhile, as shown in the XRD 
profiles of Fig. 3(b), the re-oxidized powders have a main peak 
corresponding to the α-MoO3 phase in the spectrum, and the 
β-MoO3 peak also appears as a trace phase. The presence of 
β-MoO3 phase in the powder is mainly attributed to the relatively 
low re-oxidation temperature [11].

The particle size distributions of the raw and reduced/re-
oxidized MoO3 powders are shown in Fig. 4(a) and (b), respec-
tively. The raw powder exhibited relatively large particle size, 
and the bimodal distribution of particle size varied between 0.40 
and 53.4 µm due to the platelet morphology and large agglomera-
tion as shown in Fig. 1(a). in contrast, it can be clearly seen in 
Fig. 4(b) that the re-oxidized powder after hydrogen reduction 
existed in a unimodal distribution with measured values rang-

Fig. 3. microstructure and phase analysis for prepared powders: (a) SEm image of moo3 powder after re-oxidation at 450°C for 5 h and (b) XRD 
profiles for different stages processing

Fig. 4. particle size distribution of (a) raw MoO3 powder and (b) re-oxidation powder
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ing from 0.18 and 0.42 µm. Therefore, these results indicated 
that the reduction and re-oxidation process can significantly 
decrease the particle size and modify the powder morphology 
into an equiaxed shape.

4. conclusions

The present study focused on the refinement and morphol-
ogy modification of commercial moo3 powders. Two methods, 
high-energy ball milling or reduction/re-oxidation routes, were 
attempted to prepare equiaxed moo3 nanoparticles. after ball 
milling for 25 h, most of the plate-shaped raw powders are 
changed into equiaxed particles with decreased size, but large 
agglomerates are formed and plate-shaped particles still exist. 
To overcome the limitations of powder characteristic control 
by the ball milling process, reduction and re-oxidation process 
was introduced. After hydrogen reduction at 775℃ and re-
oxidation at 550℃, the powders exhibit large agglomerates 
composed mostly of an equiaxed moo3 particles. however, 
when re-oxidized at a relatively low temperature of 450°C, 
equiaxed fine particles with a size of about 260 nm are formed, 
and the size of the agglomerates is also significantly decreased. 
In addition, re-oxidized powders show a unimodal distribution 
of particle size. These results suggest that MoO3 nanoparticles 
with modified morphology can be obtained by reduction and 
re-oxidation process.
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