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COMPARISON AND IDENTIFICATION OF OPTIMAL MACHINE LEARNING MODEL
FOR RAPID PROCESS MODELING OF AEROSOL JET PRINTING TECHNOLOGY

Acrosol Jet Printing (AJP) offers high resolution and flexible working distances, making it a promising technology for the
customization of complex electronic devices. However, devices fabricated through the AJP process often suffer from reduced
electrical performance due to limited control over printed line width, which constrains its applicability in advanced electronic
manufacturing. Consequently, achieving high precision in line width control is of paramount importance for optimizing AJP tech-
nology. In this research, a machine learning framework is proposed to enable rapid modeling of printed line width. The framework
considers sheath gas flow rate, carrier gas flow rate, and print speed as input variables, with line width as the target output. Three
representative machine learning algorithms — support vector regression, artificial neural networks, and XGBoost — were employed
to develop predictive models. The modeling performance of these algorithms was systematically compared using four conventional
evaluation metrics. Ultimately, the optimal machine learning model identified through this process was selected for the rapid mod-

eling of printed line width in the AJP process.
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1. Introduction

With the rising demand for rapid prototyping and custom-
izable micro-electronic devices, direct-write (DW) technology
is emerging as a crucial solution in the electronic manufacturing
industry [1]. Among the various DW techniques, aerosol jet
printing (AJP) is particularly noteworthy due to its high reso-
lution (approximately 10 um) and versatile working distance
(2-5 mm) [2]. These characteristics position AJP as an effective
method for the precise fabrication of complex electrical devices,
including fully additively manufactured passive components,
compact printed circuit boards, and advanced electromagnetic
devices [3]. While AJP technology offers numerous advantages,
micro-electronic devices produced using AJP often exhibit
suboptimal electrical performance due to issues related to line
geometry, such as line edge roughness and overspray. However,
amore critical concern lies in the limited precision of line width
control, which can lead to overlapping circuits or gaps between
closely spaced tracks [4]. This limitation poses a significant bar-
rier to the widespread adoption of AJP technology in advanced

electronic manufacturing. Therefore, achieving precise control
over line width is crucial for the success of AJP technology.
Currently, many designers rely on a trial-and-error approach
to determine the appropriate process parameters to maintain the
geometric accuracy of printed microelectronics. This method
lacks a systematic and intelligent framework for optimizing the
process parameters of AJP, resulting in inefficiency and higher
costs [5,6]. There is a clear need for a modeling and optimiza-
tion framework that can quantitatively evaluate the effects of
process parameters on printed line characteristics and determine
universally optimal parameters. To address this issue, various
simplified analytical models have been developed to study the
influence of critical process parameters on printed line outcomes.
However, these models primarily identify broad trends due to
system variability and the complexity of the AJP process. Ad-
ditionally, several computational fluid dynamics (CFD) models
have been developed to investigate aerosol transport and deposi-
tion mechanisms in the AJP process. Although 2D and 3D CFD
models theoretically analyze the impact of key process param-
eters, their practicality for fast process modeling and optimization
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is limited by computational resource requirements, which in turn
restricts their ability to enhance control over printed line width
during fabrication [7,8].

This research explores the application of machine learn-
ing techniques for rapid process modeling in AJP, aimed at
improving control over printed line width by analyzing the
relationships between process parameters and output. Machine
learning is preferred for its efficiency and minimal prerequisite
knowledge, and it stands out from conventional theoretical mod-
eling approaches [9-11]. Given the novelty of AJP within DW
technologies and the limited number of meta-modeling studies
available, this research systematically evaluates machine learn-
ing approaches for modeling the printed line width in AJP. The
study primarily focuses on the effects of sheath gas flow rate
(SHGFR), carrier gas flow rate (CGFR), and print speed on line
width, demonstrating that machine learning provides superior
efficiency and accuracy in modeling compared to traditional
methods, thereby facilitating precise control over line width
during the printing process.

2. Experimental

Fig. 1(a) illustrates the operational stages of AJP technol-
ogy. Initially, liquid ink is atomized into an aerosol consisting
of 2-5 um droplets using either an ultrasonic (1-10 mPa-s) or
pneumatic (10-1000 mPa-s) atomizer. The aerosol is then trans-
ported to the printhead by a nitrogen carrier gas. Subsequently,
an annular nitrogen sheath gas flow collimates and accelerates
the aerosol, which is ejected from the nozzle tip onto a moving
substrate, forming 2D or 3D structures with a resolution of ap-
proximately 10 um [12-14]. In this study, Clariant® silver nano-
particle ink was employed to create conductive silver patterns on

Carrier gas flow Ink mist entrained by carriger gas

polyimide substrates, with the ink vial temperature maintained
at 20°C. The specifics of the experimental setup and workspace
are detailed in TABLE 1, where sccm represents standard cubic
centimeters per minute.

Although extensive datasets for process modeling can
improve the accuracy of AJP, the limitations in the precision of
process parameters and system drift during printing restrict the
number of feasible experimental points within the design space.
As a result, it is crucial to adopt a machine learning approach
that is optimized for smaller datasets to expedite the process
of AJP optimization [15-17]. In this study, Latin hypercube
sampling (LHS) was utilized for experimental design to ensure
comprehensive coverage of the design space and to rigorously
examine the interactions between various process parameters and
the printed line attributes. Initially, 95 experimental points were
generated using LHS, as shown in Fig. 1(b). At each experimental
point, a single 5 mm line was printed on the substrate, and the
process was repeated three times under identical conditions to
ensure consistency.

Fig. 2(a) outlines the characteristics of the printed lines,
such as line width, edge roughness, and overspray. As the
conductivity of these lines is not significantly influenced by
isolated overspray spots, the initial microscope images of the
line samples were processed using a denoising algorithm, as
shown in Fig. 2(b) and (c). Following this, an image processing
technique, depicted in Fig. 2(e), was employed to extract the
features of the printed lines for detailed analysis. Furthermore,
Fig. 2(d) illustrates the calculation of the average line width,
where w;, represents the width of the i™ column.
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Fig. 1. (a) Illustration of aerosol jet printing working principles using an ultrasonic atomizer, (b) experimental design based on LHS
TABLE 1
Experimental setup of the AJP process
Working conditions Control parameters
Working distance Tip diameter Ink temperature | Atomization current SHGFR CGFR Print speed
(mm) (pm) (°O) (mA) (scem) (scem) (mm/s)
3 150 20 0.45 [40, 60] [25, 40] [1, 5]
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Fig. 2. Characteristics of printed line samples. (a) Outline of line features, (b) initial image of a line sample, (c) denoised image of a line sample,
(d) features extracted from a line sample. (e) Image processing flow chart for printed line features extraction

3. Results and discussion

In this study, we selected Support Vector Regression (SVR),
Backpropagation Neural Networks (BPNNs), and XGBoost as
representative models based on their complementary strengths
and proven success in regression tasks. SVR was chosen for its
ability to generalize well with limited data and its robustness
to high-dimensional inputs via kernel functions. BPNNs were
included due to their capability to model complex nonlinear
relationships through layered architectures and gradient-based
learning. XGBoost was selected for its high performance
in structured data regression, benefiting from ensemble learn-
ing, regularization, and efficient computation. These models
represent three distinct paradigms — kernel-based, neural-based,
and tree-based allowing a comprehensive evaluation of regres-
sion performance across different methodological frameworks.

In this study, the proportion of the test dataset varied from
10% to 40%, increasing in increments of 5%. To minimize the
impact of random variations on the results, each dataset con-

figuration was evaluated 30 times, and the average R value was
used as the performance metric. Fig. 3 demonstrates the effects
of different dataset splits on performance, with respect to the
SVR, XGBoost, and BPNNs models. It was noted that altering
the size of the training dataset had a negligible impact on per-
formance, with the R value remaining relatively stable around
0.95. Conversely, the highest R value was observed when the test
dataset size was 20% with respect to different models; beyond
this point, the R value tended to decline as the test dataset size
increased to 35%. Based on these findings, both the SVR model
and similar models, such as BPNNs and XGBoost, performed
best with a 20% test dataset. Therefore, an 80% training and
20% testing dataset split was established as the optimal ratio
for this research.

Fig. 4 illustrates the correlations between printed line width
and two process parameters, with the third process parameter
in each subplot set to its average value. The modeling results
reveal the complex interactions among different process param-
eters. Fig. 4 shows that, according to the continuity equation, the
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Fig. 3. The impact of the data size proportion on modeling performance of (a) BPNNs, (b) XGBoost and (¢) SVR
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Fig. 4. The correlations between the printed line width and the process parameters based on XGBoost model
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carrier gas flow rate (CGFR) positively affects the line width,
whereas the sheath gas flow rate (SHGFR) has an inverse effect.
Additionally, due to the complex aerodynamics within the print-
head, the interaction between CGFR, SHGFR, and print speed
exerts a non-linear influence on the printed line width. This effect
is primarily driven by the velocity and pressure buildup in the
combination chamber, resulting from increased gas flow rates and
print speed. Variations in the velocity and pressure fields affect
the Saffman lift force and Stokes drag force acting on the aerosol
droplets, which in turn influence their trajectory at the nozzle
exit [18]. These aerodynamic effects are critical in determining
the printed line width, as they alter the distribution and deposi-
tion of aerosol particles [19]. Understanding this relationship is
essential for controlling how fine adjustments in print parameters
translate into changes in the final printed features [20].

TABLE 2

Modeling performance of printed line width based
on four classic evaluation indicators

Model Training dataset Testing dataset
RMSE [MAE| R | R* |RMSE|MAE| R | R?
SVR 2.79 1291 1095(094 | 4.16 | 3.53 | 0.92 | 0.86
BPNNs | 3.15 [ 3.69|0.93 091 | 527 |4.25]0.91]0.83
XGBoost | 2.19 | 1.96 | 0.96 | 0.95 | 3.59 | 3.16 | 0.93 | 0.89

The evaluation of the process models developed using SVR,
BPNNS and XGBoost is presented in TABLE 2. Metrics such as
R and R? were initially used to compare the models, revealing
high values that indicate these models accurately represent the
overall trends of the AJP process. Notably, of the three developed
models, XGBoost exhibited the best performance, leveraging its
flexible modeling approach, which proved more effective than
both BPNNs and SVR. Further evaluation using Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) supported
these findings, as outlined in TABLE 2. The XGBoost model
consistently reported lower MAE and RMSE values across
both the training and testing datasets, demonstrating its superior
predictive accuracy.

4. Conclusions

This study explores the use of machine learning techniques,
specifically SVR, BPNNs, and XGBoost, to optimize line qual-
ity in the AJP process. The modeling results revealed that the
optimal dataset split was 80% for training and 20% for testing,
which provided the best performance. Additionally, XGBoost
outperformed the other models in terms of predictive accuracy,
as evidenced by lower RMSE and MAE values. Moreover, the
analysis highlights significant interactions between key process
parameters, such as carrier gas flow rate, sheath gas flow rate, and
print speed, all of which influence the printed line width. These
results provide a solid foundation for future work, which will aim
to incorporate additional factors such as ink and substrate proper-
ties to further enhance print quality and process optimization.
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