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Effect of Fibre Mercerization on Strength Properties  
of Agave Cantula Roxb. Strengthen Foamed Concrete

Researchers are increasingly becoming fascinated by the possibilities of utilizing natural fibre, which is a byproduct of produc-
tion processes, as an addition in concrete. This fibre exhibits a low density and is amenable to chemical changes. The primary aim 
of this research study is to examine the influence of agave cantula roxb. fibre (ACRF) in low-density foamed concrete (FC) after 
being subjected to different doses of alkali treatment using sodium hydroxide (NaOH). Various weight fractions of treated ACRF 
were employed in the FC mix, namely 0% (as the control), 1%, 2%, 3%, 4%, and 5%. FC with a density of 1060 kg/m3 was produced 
and subsequently tested. The three types of strength properties that have been evaluated and analysed included flexural, tensile, and 
compressive strengths. The findings from this study have revealed that the inclusion of 3% of treated ACRF in FC yields highly 
favourable results in relation to strength properties. The use of treated ACRF improves the FC’s strength characteristics, particularly 
its bending and tensile strength, by bridging microscopic cracks and filling up gaps. It is noteworthy to emphasize that accumula-
tion and unequal dispersion of ACRF are possible if the weight fraction of ACRF applied above the optimal value of 3% which 
led to decrease in FC’s strength properties. This exploratory work will lead to a better understanding of the potential applications 
of treated ACRF in FC. It is critical to encourage the long-term development and implementation of FC products and technology.
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Nomenclature

FC	 –	 Foamed Concrete
ACRF	 –	A gave cantula roxb. fibre 
NaOH 	–	 Sodium hydroxide 
CO2	 –	 Carbon dioxide
SEM	 –	 Scanning electron microscopy
OPC	 –	 Ordinary Portland cement

1. Introduction

Nowadays, foamed concrete (FC) is considered to be the 
most widely used building material worldwide [1]. This material 
can be used for a variety of purposes, including the construction 
of buildings, structures, bridges, and other infrastructure-related 

projects, because of its cost-effectiveness and versatility [2]. 
FC’s limited tensile strength and fracture toughness serve as 
two of its primary drawbacks. The conventional approach to 
mitigating the issue of low tensile strength has conventionally 
involved the major reinforcement method of using steel reinforc-
ing bars [3]. It has been discovered that adding short fibres that 
are randomly orientated and uniformly distributed significantly 
increases the material’s toughness [4]. This aids in controlling 
the formation and spread of microcracks [5]. It has been noted 
that fibres, which are made of a wide range of materials includ-
ing steel, glass, polypropylene, and other polymeric materials, 
significantly increase fracture toughness [6]. Most of these fibres 
do, however, have distinct disadvantages. Steel and carbon fibre, 
for example, are regarded as rather expensive materials [7]. 
Furthermore, it is commonly known that asbestos fibres are 
harmful to human health. It’s also important to remember that 
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many synthetic fibres have a big environmental impact. For 
a long time, concrete reinforcing has been used for a variety of 
useful applications [8]. On the other hand, its exclusive use for 
FC reinforcement is a relatively new concept [9]. In countries 
where natural fibres of all kinds are abundant, it makes finan-
cial sense to investigate appropriate technology for integrating 
these fibres. FC reinforced with natural fibres is a revolutionary 
class of building materials that performs on par with traditional 
concrete when different kinds of synthetic fibres are used [10].

With an annual output of over 1.35 billion tonnes, the manu-
facturing of cement represents a major contribution to the release 
of greenhouse gases, notably CO2. With the yearly demand for 
building exceeding one billion metric tons, the output of ordi-
nary Portland cement (OPC) has experienced a notable surge in 
response. Over the past few years, there has been a noticeable 
trend in the construction sector to use FC as a favoured building 
material. FC is a composite material made of foaming agent, fine 
sand, cement, and potable water. Coarse particles are not used 
in this specific type of concrete. Fused carbon is made up of 
trapped bubbles that serve as the aggregate. The use of bubbles 
improves the concrete’s workability, flowability, thermal proper-
ties, and ability to reduce weight [11]. FC is noticeably brittle in 
spite of its improved workability, flowability, thermal properties, 
and reduced weight. The material’s brittleness causes decreased 
impact strength, weakened breakage severity, insufficient barrier 
to fracture transmission, and decreased bending strength [12].

Due to its low density and affordability, agave cantula 
roxb. fibre (ACRF) shows promise as an effective natural re-
inforcement for cement composites. The application of ACRF 
is thought to be an environmentally benign material that has 
been used in a number of industries, such as the building and 
automotive sectors [13]. The literature has documented the 
integration of agave fibres into a range of matrices, including 
polyester, epoxy, biopolymers, and cement [14-22]. Neverthe-
less, the strong fibre-matrix adhesion, exceptional toughness, 
and low damage susceptibility of ACRF make their mechanical 
qualities remarkable. An appropriate treatment approach has the 
ability to improve these features [23]. Many of the research in 
the literature review focus mostly on how unprocessed natural 
fibres are mercerized [24-26]. As mentioned in the review study 
by Ramesh et al. [27], the interface affects the final properties 
of composites. 

The addition of fibres to concrete can significantly improve 
its mechanical qualities, claim Shah and Ouyang [28]. A thor-
ough understanding of the interactions between discrete fibres 
and concrete is essential to the progress of upcoming projects. 
Compared to their tensile strength, cementitious materials have 
a comparatively limited strain capacity and fracture strength. It 
has been discovered that the addition of fibres significantly af-
fects the development of the tensile force capacity. According to 
evidence provided by Sathiamurthi et al. [29], the epoxy hybrid 
composites’ flexural strength was found to be highest when they 
were reinforced with a composite that included 20% ACRF. Af-
ter several alkali treatments, the morphology of the fibres was 
investigated using scanning electron microscopy (SEM) [30]. 

The results of the experiment show that hemicellulose, wax, and 
other contaminants were successfully removed. Four different 
treatments namely acetylation, alkali silane, enzymatic were 
applied to ACRF in a study by Huerta-Cardoso et al. [31]. En-
hancing the fibres’ morphology and increasing their compatibility 
with polylactic acid was the aim of these treatments. Jani et al. 
[32] looked at the characteristics of ACRF that was treated with 
alkali at concentrations of 7.5% and 10% in their experimental 
investigation. According to their study’s conclusions, the ACRF 
treated with a 10% concentration of sodium hydroxide (NaOH) 
had better mechanical and thermal qualities than the ACRF 
treated with a 7.5 weight percent concentration of NaOH. The 
effects of different NaOH concentrations (0.5%, 1%, 2%, 4%, 
and 10%) on the properties of concrete strengthened with sisal 
were investigated by Jacob et al. [33]. The research findings in-
dicate that the highest tensile strength was achieved by applying 
a 4% sodium hydroxide (NaOH) treatment at room temperature. 
Mishra et al. [34] reported that sisal fibre-reinforced polyester 
composites treated with a 5% NaOH solution concentration had 
a greater tensile strength than those treated with a 10% NaOH 
solution concentration.

In addition to practical concerns such as the non-ecological 
and detrimental ecological implications, concrete exhibits some 
limitations, including reduced longevity, diminished ability 
to withstand post-cracking loads, inadequate tensile strength, 
diminished luminosity, minimal environmental resistance, and 
restricted fatigue resistance. Hence, there is a pressing demand 
for alternative materials that possess sufficient strength proper-
ties and effectively reduce the overall cost of the end product. 
Although numerous research works have been performed observe 
the influence of NaOH treatment of ACRF on cement-based ma-
terials, most research had focused on normal strength concrete. 
No single research had been executed to look into the effects 
of ACRF treatment on mechanical properties of FC. It should 
be noted that higher concentrations of alkali lead to increased 
delignification in natural fibres, which consequently results in the 
weakening or breaking of the fibres. Hence this research explored 
the influence of fibre mercerization on the properties of ACRF 
to strengthen FC. A better understanding of the potential uses of 
treated ACRF in FC was the outcome of this exploratory study. 
Fostering the long-term creation and deployment of FC materials 
and infrastructures is of the utmost importance. 

2. Experimental Setup

2.1. Materials

To produce FC samples, it was imperative to have five 
indispensable components. The aforementioned materials con-
sisted of cement, which functioned as the cohesive substance, 
fine aggregate, employed as a filler, uncontaminated potable 
water, and a foaming ingredient derived from proteins, which 
performed as a surfactant. The incorporation of ACRF as an ad-
ditive was employed in the formulation of the FC base mixture. 
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2.1.1. Ordinary Portland Cement (OPC) 

Portland cement, namely Ordinary Portland Cement (OPC), 
was used in the study since it met the requirements set forth in 
the BS197-1 standard. The initial setting time of normal Portland 
cement is reported to be 50 minutes, and the soundness has been 
determined to be 12 mm.

2.1.2. Aggregate

The filler material employed in this study consisted of high-
quality river sand. The sand was gotten from a local provider. 
The choice of fine river sand was made due to its desirable 
characteristics of homogeneity and gradation, which impact to 
the enhanced FC workability. 

2.1.3. Water

As per the BS-3148 standard, the procedure of blending 
and maturing the FC necessitates the use of potable water that 
is free from any contaminants. 

2.1.4. Foaming Agents

The application of Noraite PA-1, a surfactant produced 
from proteins, was conducted. The surfactant and water were 
combined in a ratio of 1:30. The foam solutions have shown the 
capacity to achieve a density of 70 ± 5 kg/m3 during the process 
of aeration. The pre-foaming method was applied to manufacture 
foam, using an automatic foam generator known as TM-1. Fig. 1 
shows the stable foam produced by the foam generator.

2.1.5. Agave cantula roxb. fibre (ACRF)

The ARCF utilized in this inspection was brought by DRN 
Technologies Sdn Bhd. The initial ACRF material underwent 

a process of being cut to a specific length of 19 mm. The un-
treated ACRF underwent an alkaline treatment using NaOH 
tablets dissolved in water at a concentration of 6% (weight/
volume) for a duration of 24 hours. Following a 24-hour period 
of alkali treatment, the ACRF underwent a thorough washing 
process using a diluted solution of acetic acid, followed by 
multiple rinses with water until the pH reached a neutral value 
of 7. The ACRF was evenly distributed on a tray and subjected 
to natural drying in direct sunlight for a duration of 72 hours. 
Fig. 2 shows the ACRF used in this examination.

2.2. Mix design

There was a total of six blends were created. A density of 
1060 kg/m3 was accomplished for the FC. The FC blends were 
supplemented with ACRF at different weight fractions, namely 

 
                                     (a)                                                                       (b) 

Fig. 2. Agave cantularoxb. fibre used in this study (a) treated ACRF; (b) rawACRF

Fig. 1. The stable foam generated from the TM-1 foam generator
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1%, 2%, 3%, 4%, and 5%. A sand-cement ratio of 1:1.5 was 
utilized in each mixture, while the water-cement fraction was 
constantly kept at a value of 0.45. The mixture design of ACRF-
reinforced FC in the current research is displayed in TABLE 1. 
Fig. 3 shows the fabrication process of FC.

Table 1

FC mix design

Mix AF 
(%)

AF
(kg/m3)

Sand
(kg/m3)

Cement
(kg/m3)

Water
(kg/m3)

Foam 
(kg/m3)

Control 0 — 585 390 195 29
ARCF1 1 11.7 585 390 195 29
ARCF2 2 23.4 585 390 195 29
ARCF3 3 35.1 585 390 195 29
ARCF4 4 46.8 585 390 195 29
ARCF5 5 58.5 585 390 195 29

Fig. 3. Fabrication of FC

2. Experimental setup

2.3.1. Compressive strength test

Samples measuring 100×100×100 mm were used to assess 
the compressive strength of the cured FC specimens (Fig. 4). 
The experiment was conducted utilising a universal testing 
equipment, which could support a maximum load of 3000 kN, 
inside a concrete laboratory. When testing compressive strength, 
a load speed of 0.55 MPa/sec was used, in accordance with the 
specifications outlined in BS12390-3. The compressive strength 
at each curing interval was determined by testing three samples, 
and the average of the three measurements was recorded. 

Fig. 4. Compression test apparatus

2.3.2. Flexural strength

The investigation involved assessing the flexural strength 
of FC with a density of 10600 kg/m3. This was accomplished 
by using prisms FC specimens of 100×100×500 mm (Fig. 5). 
In a manner analogous to the evaluation of compressive strength, 
three specimens were subjected to testing for each respective 
duration of curing. The average value of the three measured 
readings was afterward determined as the ultimate flexural 
strength. The experiment was conducted at a speed of 0.35 kN/sec 
in compliance with BS12390-5.

Fig. 5. Flexural test setup
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2.3.3. Splitting tensile test

The experiment involved conducting a splitting tensile 
strength test on a prism of 100×200 mm (Fig. 6). The cylindri-
cal samples underwent testing utilizing the identical universal 
testing machine employed for the evaluation of compressive 
strength. During the test, a constant speed of 0.75 MPa/sec was 
used. Additionally, three samples were selected at each specified 
curing interval and subjected to testing. BS12390-6 was followed 
while conducting the test.

Fig. 6. Split tensile test apparatus

3. Results and discussion

This section will provide an overview of the findings 
derived from the laboratory evaluation conducted to ascertain 
tensile, flexural and compressive strengths as well as the modulus 
of elasticity.

3.1. Compressive strength

The compression strength test results conducted are dis-
played in Fig. 7. Based on the provided data, it is evident that 
the inclusion of treated ACRF in FC has consistently resulted 
in enhanced compressive strength, regardless of the weight 
fraction. The conducted tests at 7, 28, and 56 days of curing 
consistently displayed that, overall, the mixtures exhibited su-
perior compressive strength in comparison to the control speci-
men across all densities. The optimal weight fraction of ACRF 
was 3%. At a weight fraction of 3%, the ACRF and cement 
matrix achieved a high level of compaction, leading to excellent 
mix homogeneity. The compressive strength values achieved at 
day 56 were 6.14 MPa for mix ACRF3 compared to the con-

trol specimen which only achieved a compressive strength of 
3.82 MPa. The percentage of enhancement was approximately 
61%. At levels exceeding the optimal weight fraction of ACRF 
addition, agglomeration and uneven dispersion of ACRF can 
be predicted. This, in turn, leads to a decrease in compressive 
strength, specifically when the weight fraction of ACRF reaches 
4%.The incorporation of treated natural fibre like ACRF into 
FC has been observed to slow down the hydration process. As 
a consequence, the strength of FC is reduced initially, although 
it does improve with time after reaching a certain age. The in-
corporation of ACRF will contribute to the failure mode under 
compression stress due to the existence of voids and cracks in 
the FC as well as at the zone of transition [35].

Fig. 7. Compressive strength of 1060 kg/m3 density FC with different 
weight fractions of ACRF

3.2. Flexural strength

Overall, the addition of ACRF to FC resulted in a significant 
improvement in flexural strength, regardless of the weight frac-
tion of ACRF added to the FC mixture. The findings of flexural 
strength achieved for a density of 1060 kg/m3 with different 
weight fractions of ACRF are illustrated in Fig. 8. The control 
mixture had the lowest flexural strength, with only a marginal 
increase observed over the course of the testing period. Neverthe-
less, the inclusion of ACRF in FC specimens results in a notable 
expansion in flexural strength over time. The flexural strength 
of the control FC on day 28 was measured to be 0.76 MPa. The 
optimal weight fraction of ACRF that yielded the most favour-
able outcomes in terms of flexural strength was determined to be 
3%. The highest flexural strength achieved on the 56th day was 
1.41 MPa when a weight fraction of 3% of ACRF was present. The 
incorporation of ACRF in FC acts a substantial role in enhancing 
the strength of the cementitious matrix in FC. This addition also 
leads to a transformation in the material’s properties, transition-
ing it from a brittle state to a ductile elastic-plastic state. The 
use of ACRF serves to improve the flexural strength of FC [36]. 
Nevertheless, the excessive inclusion of ACRF weight fraction 
in FC, above 3%, can result in a decrease in the bond strength.



1180

Fig. 8. Flexural strength of 1060 kg/m3 density FC with different weight 
fractions of ACRF

3.3. Split tensile strength

Fig. 9 displays the outcomes pertaining to the tensile 
strength of FC when various weight fractions of ACRF were 
incorporated. The investigation revealed a consistent pattern, 
wherein the incorporation of ACRF at a weight fraction of 
3% yielded the most favourable outcomes in terms of tensile 
strength. As depicted in Fig. 9, the inclusion of a 3% weight 
fraction of ACRF resulted in the highest splitting tensile strength 
of 0.96 MPa at day 56, whereas the control specimen, which did 
not have any fibre addition, only gained a tensile strength of 
0.59 MPa. Upon surpassing the optimal amount of ACRF addi-
tion, the occurrence of accumulation and the non-even dispersal 
of ACRF was noticed. Consequently, this led to a reduction in 
splitting tensile strength, specifically at a weight fraction of 4% of 
ACRF. The rise in splitting tensile strength can be ascribed to the 
improved toughness of FC resulting from the inclusion of ACRF 
[37]. The addition of 3% ACRF content further boosts the raise 
of strength in FC by facilitating an optimum pozzolanic response 

with ordinary Portland cement (OPC) content [38]. As a result, 
the FC becomes denser and exhibits more strength [39]. The 
findings of this study demonstrate that the incorporation of ACRF 
positively impacts the tensile strength of FC, irrespective of the 
weight percent of ACRF.

4. Conclusions

This laboratory investigation designed to examine the 
stimulus of using treated ACRF in FC to increase its strength 
characteristics. The weight fractions of ACRF incorporated in 
FC mixtures were 0%, 1%, 2%, 3%, 4%, and 5%. The evalu-
ated strength properties encompassed flexural, compressive and 
tensile strengths. The current study presents a concise overview 
of its research findings in the following manner: 
1.	 The incorporation of a 3% dosage of treated ACRF has 

been determined to result in the most favourable results in 
relation to compressive, flexural, and tensile strengths. 

2.	E mployment of treated ACRF serves to fill voids and 
connect micro-cracks within the FC, leading to enhanced 
strength properties, particularly in terms of bending and 
tensile strength. The use of ACRF effectively mitigated the 
dissemination of cracks in FC under applied loads. 

3.	H owever, it should be noted that when the weight fraction 
of ACRF added exceeds the ideal value of 3%, there is 
a tendency for agglomeration and non-uniform dispersion 
of ACRF to occur.

4.	 Chemical treatments of natural fibre serve many functions, 
such as removing non-cellulosic materials and waxes to ex-
pose more reaction sites for fibre reactions. Some compounds 
bridge matrix-fibre interactions while the others produce 
free radicals and improving composite constituent interac-
tion. Chemical treatment also improves fibre mechanical 
characteristics. Different treatments improve characteristics 
differently. Since economic issues are involved, choice 
condition must be chosen to maximize treatment benefit.
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