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Effect of the Material Gradation on the Fracture Trajectory  
in Ceramic/Metal Functionally Graded Materials

This paper is based on a 2D numerical study of crack initiation and growth in ceramic/metal functionally graded materials 
(FGMs) under mixed mode condition. The finite element method is used for modeling the crack growth trajectory. Two types of 
ceramic/metal FGMs are considered to explore the effect of the material gradation on the fracture trajectory. The variation of the 
material properties is declared in a program by defining the material parameters at the center of the elements. After a numerical 
evaluation of the fracture parameters, the Maximum Tangential Stress (MTS) criterion is used for the prediction of crack propaga-
tion direction with respect to the crack axis. The difference in the crack growth trajectory can be related to the influence of the 
material gradient. In addition, it was found that the easiest way for the crack propagation is when the crack is perpendicular to 
the material gradation. A crack located on the rigid side of the specimen deviates less compared to the one on the soft side.

Keywords: Mixed mode loading; functionally graded materials; Stress intensity factors; T-stress; Crack propagation; ceramic/
metal FGM

1. Introduction 

Functionally graded materials (FGM) are a new material 
concept of sophisticated composites, designed with a gradual 
variation of mechanical properties, microstructure and composi-
tion different from classic composites or homogeneous materials. 
This new generation of materials have a reputation of being ideal 
for the applications requiring various performances like the re-
duction of thermal stresses associated with the good mechanical 
properties by designing a ceramic/metal FGM. Because of the 
complex design of the FGMs, the study of fracture and crack 
propagation is very challenging. 

Compared to the detailed studies on mode I fracture of 
FGMs, a limited number of works have been reported for the 
case of mixed mode fracture. Mixed-mode experimental and 
numerical study was carried out by Oral et al. [1] on fracture 
initial direction in FGMs. 2D dynamic mixed mode crack growth 
simulations was done on FGMs by Zhang and Paulino [2] by 
the mean of cohesive zone models. Using the extended finite 
element method (XFEM), Dimitri et al. [3] have been able to 
predict the crack direction for different loading conditions and 
to evaluate stress intensity factors (SIFs). The same approach 
(XFEM) was applied by Dolbow and Gosz [4] who considered 

an arbitrarily oriented crack in the plane problem. Kirugulige 
and Tippur [5] carried out dynamic fracture tests to investigate 
the crack growth in glass-filled epoxy FGM. Jin and Batra [6], 
Gu and Asaro [7] came up with quasi-static SIFs for cracks in 
FGM for distinct geometries and loading conditions.

It is known that the determination of the crack propagation 
trajectory is based on the determination of the SIFs, for that rea-
son, accurate values of SIFs are necessary to predict the crack 
growth at each step. Various methods have been reported in the 
literature to accurately evaluate SIF for different materials [8-13]. 
Among several studies dealing with FGMs, Kim and Paulino [14] 
attempted to evaluate the crack propagation trajectory for FGMs 
through numerical simulations in the case of mixed-mode and 
non-proportional loading; they used a modified crack closure 
method. The same authors [15] carried out fracture analysis of 
nonhomogeneous orthotropic materials using a mixed mode 
J-integral formulation. In another study [16], SIFs were evalu-
ated by the mean of the interaction integral method. Topal and 
Dag [17] performed a thermal fracture analysis of orthotropic 
FGMs using an equivalent domain integral approach. The dis-
placement extrapolation technique was used by several authors 
to determine the stress intensity factors [18-20]. SIFs were deter-
mined by Rao and Rahman [21] using the element-free Galerkin 
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method for 2D arbitrary geometry FGMs. Using a generalized 
method, Chandran and Barsoum [22] determined KI and KII for 
center-cracked specimen. Dorduncu et al. [23] used peridynamic 
approach for modeling of two dimensional functionally graded 
plates. Dewei He et al. [24] carried out a study of fracture 
in functionally graded materials under thermal shock loading 
using peridynamics. Nguyen et al. [25] investigated the effect 
of porosities on crack propagation in FGM structures using the 
phase-field model. It was found that this method can accurately 
model the failure of porous structures.

Much of the literature focused on theoretical and numeri-
cal studies, there are relatively few experimental works dealing 
with the mixed mode fracture of functionally graded materials. 
Rousseau and Tippur [26] performed experimental four-point 
bending tests and investigated the fracture trajectory in epoxy/
glass FGM beam. Experimental study was done by Tilbrook 
et al. [27] by the mean of fatigue and fracture tests of FGMs; 
they studied the influence of graded properties on their results. 
Xin Jin et al. [28] investigated the fracture in ZrO2/NiCr FGM 
under mixed mode condition. Abanto-Bueno and Lambros [29] 
experimentally studied the fracture behavior of a polymer-based 
functionally graded material. Digital image correlation technique 
was used to extract fracture parameters SIFs and T-stress [30]. 

The aim focus of this work is to numerically investigate 
the influence of the direction of material gradient on the mixed-
mode fracture path in ceramic/metal FGMs. To this end, we have 
considered two types of FGMs, with different material gradients. 
A special algorithm has been developed by the mean of Ansys 
APDL, incorporating the material properties and a local fracture 
mechanics criterion to predict the crack growth path of FGM 
beam under three point bending. The mixed mode conditions are 
obtained by shifting the applied loading position with respect 
to crack axis. 

2. Theoretical formulations

2.1. Determination of the SIFs

In this study, the displacement correlation technique DCT 
[31] is used to compute the mixed mode SIFs KI and KII for 
functionally graded materials. This correlation is performed on 
specific points located on the crack lips, the parameters KI and 
KII are respectively the mode I and mode II SIFs and are given 
by the following equations:
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Etip, υtip et μtip represent respectively, the elastic modulus, Pois-
son’s ratio and shear modulus. These parameters are evaluated 
at the crack tip. 

In linear elasticity, the parameter ktip is equal to 
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for plane stress and equal to (3 – 4νtip) for plane strain.
L corresponds to the length of the element side connected 

to the crack front. u and v are, respectively, the displacements 
along the x and y directions.

It should be mentioned that for an improved calculation 
accuracy of the field in the vicinity crack front, a special quarter 
point finite element is considered. The middle side node of the el-
ement in the crack front is shifted to quarter length of the element

2.2. Determination of T-stress

The in-plane linear elastic stresses in the region of the 
crack tip can be defined as symmetric and antisymmetric fields, 
respectively known as mode I and mode II. The stress fields can 
be represented as an eigen series expansion [32-34]. Arround 
the crack front, where the higher order terms O(r1/2) can be 
neglected, the mode I stress fields are:
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And for mode II:
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where σxx, σyy and τxy are the mode I stresses, r, θ, x and y are 
coordinates in conventional polar and Cartesian systems with 
the crack tip at the origin. The T term is a constant stress parallel 
to the crack namely the T-stress. 

For a mixed mode loading, a singular term corresponding to 
mode I, or mode II or mixed (I+II) are considered. The methods 
used for mode I are therefore not valid for the case of a mixed 
mode I/II. T-stress can be determined without the use of SIFs 
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when both symmetric and antisymmetric properties of modes I 
and II are used. The stresses in the first half of the cracked speci-
men can be added to the stresses of the second half. The mode II 
stresses are simplified and the mode I stresses are doubled. This 
gives the possibility to determine T-stress by the following equa-
tions using finite element analysis [35].
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It is convenient to use Eq. (10) since only one stress com-
ponent is used.

A more efficient way to determine T-stress without using 
a very refined mesh is to use the displacement method. Hooke’s 
law for small deformations can be written as follows:
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where: εxx et uxx re the strain and displacement respectively 
parallel-to-the-crack and E' is defined as E' = E for plane stress 
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 for plane strain. E is Young’s modulus and 

ν is Poisson’s ratio.
Using Eq. (14) for the upper and the lower crack lips, and 

summing the results, T-stress can be determined by:
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Based on the displacements alone, T-stress is obtained using:
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2.3. Determination of the fracture trajectory

After a numerical evaluation of the SIFs, the fracture 
criterion must determine the crack propagation direction with 
respect to the crack axis. The fracture phenomenon is assumed 
to be driven by the circumferential stress intensity in the vicin-

ity of the crack front. Introduced by Erdogan and Sih [36], the 
Maximum Tangential Stress (MTS) is a local criterion, based 
on the knowledge of the stress field at the crack tip. According 
to this criterion, the bifurcation initiates at the crack tip in the 
direction for which the circumferential stress σθθ is maximum.

In linear elasticity, it is translated to: 
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One can deduce:
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The crack direction can be expressed as follows :
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For this criterion, the propagation direction θ0 is independ-
ent of the nature of the material, especially the Poisson’s ratio ν. 
This criterion needs quite-few remeshing for every step of crack 
growth. It is also possible to use it for materials with elastic-
plastic behavior for the case of confined plastic zone [37].

3. Crack growth modeling

The fracture initial angle θ at each propagation increment 
Δa is determined by solving the equations system defining the 
chosen criterion. In this study, we use the MTS criterion. The 
propagation angle θ is calculated in the local reference system 
with respect to the crack axis. For the proposed examples, the 
calculations are performed step by step, assuming small crack 
propagations Δa. To explain how the program works for the 
crack propagation, a flowchart is presented in Fig. 1. In each 
step, SIFs KI and KII are calculated first using the displacement 
field information in the vicinity of the crack. After finding the 
propagation angle θ using the fracture criterion, we assume 
a small crack extension Δa in the calculated direction. Then in 
the next step, the crack front is automatically shifted to extend 
the crack. The new stress intensity factors KI and KII are calcu-
lated to determine the new propagation angle. It is noted that an 
advancing front method is used to generate the FE mesh, where 
the mesh generation and the singular elements construction are 
incorporated in the program, simplifying the analysis of the 
crack growth. The algorithm can be repeated continuously to the 
ultimate failure of the specimen or can be stopped by the user. 
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Fig. 1. Flowchart of the crack modeling algorithm

4. Finite element analysis

4.1. Numerical validation

In this section, fracture simulations for FGM material were 
carried out in order to validate the proposed numerical method. 
Cracked FGM beam subjected to three-point bending was con-
sidered. Fig. 2 shows the FGM beam geometry and boundary 
conditions considering an offset loading. A linear variation of 
the material properties is chosen according to the proposed 
examples of Khazal [38] and Chen [39]. FE modelling was 
conducted using ANSYS APDL. The structure was modeled in 
2D under plane strain conditions using isoparametric quadrilat-
eral Plane 82 elements, which have eight nodes. A total number 
of 2394 elements is used, and special singular elements mesh is 
investigated at the crack-tip to consider the singularity of stress 
and deformations fields.

Fig. 2. Cracked FGM beam subjected to three-point bending [38-39]

In Fig. 3, the crack path trajectory obtained by the proposed 
method is compared to the numerical results of Khazal [38] us-
ing the extended element free Galerkin method, and to the crack 
trajectory using the scaled boundary finite element method pro-
posed by Chen [39]. Clearly, we have accurate results and a good 
agreement is obtained between the predicted crack trajectories 
by the numerical methods cited above. One can conclude that the 
developed approach of the current study is successfully validated 
and can be used for the next investigations.

Fig. 3. Comparison of crack path trajectories for FGM beam

4.2. Effect of the material gradation

To study the effect of the material gradation on the crack 
growth in ceramic/metal FGMs subjected to mixed-mode load-
ing, we considered two sorts of functionally graded materials: 
FGM-A corresponds to a material which the gradation is along 
the y-axis (Fig. 4a), and FGM-B whose material gradation 
is along the x-axis (Fig. 4b). For both materials, the specimen 
is loaded by an applied force located in one of the three posi-
tions A, B or C according to the configurations shown in Fig. 4.

Fig. 4. Geometry and material gradient direction; a) for FGM-A and 
b) for FGM-B

For this problem, we considered a cracked FGM speci-
men under three-point bending. A pre-crack with a = 2 mm is 
considered parallel to the material gradient for FGM-A, and 
grows forward in the direction of decreasing Young’s modulus, 
and perpendicular to the gradient of the properties for FGM-B. 

Eight nodded quadratic elements are used to mesh the con-
sidered geometry. To take into account the singularities of the 
fields in the vicinity of the crack-tip, some modifications were 



959

necessary [40-41]. Singular elements were employed to describe 
the singularity at the crack-tip. The special quarter point finite 
elements are used for a better approximation of the field near the 
crack front. The mid-side node of the element connected to the 
crack front is shifted to the quarter of the element length (Fig. 5). 
The determination of fracture parameters is based on the crea-
tion of singular elements at the crack tip based on isoparametric 
finite element developed into the APDL program. This method 
has proven its effectiveness in previous studies [42-45].

Fig. 5. Singular elements at the crack-tip

The meshing is considered to calculate the T-stress and 
the SIFs KI and KII using DCT method to predict the fracture 
trajectory for every step of crack growth. The calculation of the 
fracture parameters is performed under plane strain conditions. 
According to Noda and Jin [46] the influence of Poisson’s ratio 

can be neglected for functionally graded materials, thus Poisson’s 
ratio is considered ν = 0.3 for the whole model. 

Fig. 6 shows the geometrical model of FGM beam and 
expose the FE mesh of the specimen subjected to bending with 
a zoom on the crack front mesh. Fig. 7 presents the elastic modulus 
E gradient for the FGM-A and FGM-B. The mechanical properties 
E, ν and KIC (fracture toughness) were taken from the experi-
ments of Xin Jin et al. [28]. The detailed values of the material 
gradation are summarized TABLE 1 for each layer of the FGM. 

Table 1

Material properties for each layer of the considered FGM

Material composition Ceramic/Metal E (GPa) KIC (MPa. )
100/0 201 11
90/10 188 9.4
80/20 170 7.5
70/30 152 6.2
60/40 135 4.7
50/50 120 3.8

5. Results and discussion

Figs. 8, 9 and 10 illustrate respectively the variation of the 
mixed mode SIFs KI and KII as well as the T-stress in the case 
of FGM-A and FGM-B. The value of KI increases during crack 

Fig. 6. FE mesh and zoom on crack-tip

a) b)

Fig. 7. Elastic modulus variation of the considered materials [28]: a) FGM-A and b) FGM-B
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extension. In all cases, KI has a major effect on the driving force 
of the crack propagation. However, KII defines the deviation 
from the stable mode I crack propagation and tends to oscillate 
around zero during the propagation.

The evolution of the normalized T-stress is presented in the 
Fig. 10, its magnitude is smaller compared to that of KI in the 
first part of the crack propagation, and then it takes significant 
values in the last stages. We note a negative magnitude in the 
early stages of propagation for both FGM-A and FGM-B ma-
terials, then T-stress changes sign to positive. This could be an 
indication of the instability of the crack propagation.

Using the MTS criterion, we have plotted in Fig. 11 the 
crack propagation trajectories corresponding to the two materi-
als FGM-A and FGM-B for the three loading positions (A, B 

and C). In the case of loading in positions A and B, the crack 
propagation trajectory leans toward left in the direction of the 
loading point, which creates a mixed mode conditions. This is 
noticed for both materials, however, for the FGM-B, the crack 
takes a more curved trajectory followed by an increasing of the 
bifurcation angle as the crack continue to grow. 

For a better illustration of this phenomenon, we can focus on 
the comparison presented in Fig. 11c for the loading position C. 
In this case, the condition is in mode I, the crack is supposed to 
propagate in a straight direction with respect to the initial crack, 
which is the case for FGM-A. However, in the case of FGM-B, 
the propagation trajectory deviates from the initial direction. 
Due to the identical geometry and boundary conditions of the 
FGM beams, this can be explained by the type of the FGM-B 

Fig. 8. Evolution of the normalized mode I SIF for FGM-A and FGM-B as a function of crack extension at loading positions; a) A, b) B, c) C

Fig. 9. Evolution of the normalized mode II SIF for FGM-A and FGM-B as a function of crack extension at loading positions; a) A, b) B, c) C

Fig. 10. Evolution of the normalized T-stress for FGM-A and FGM-B as a function of crack extension at loading positions; a) A, b) B, c) C



961

material where the gradation direction is perpendicular to the 
direction of the initial crack, which means that the value of the 
elastic modulus decreases in this direction and the crack takes 
the easiest trajectory to propagate.

Without a doubt, the material gradient has a considerable 
effect on the crack trajectory in FGMs. Moreover, it can be con-
cluded that the easiest way for the crack propagation is when the 
crack is perpendicular to the material gradation where the crack 
deviates towards the side of the decreasing properties. 

A comparison between the kinking angles θ0 of both ma-
terials is presented in TABLE 2. It is noted that for FGM-A, the 
crack bifurcation takes place at an initial angle of 6.97° with 
respect to the crack axis. While, the kinking angle for FGM-B 
is 11.82°. From the numerical results, one can conclude that the 

Fig. 11. Numerical predictions of the crack growth trajectories of FGM-A and FGM-B at different loading positions; a) A, b) B, c) C

Fig. 13. Stress distribution maps of FGM-A and FGM-B

Fig. 12. Comparison of the critical load as a function of crack extension 
for FGM-A and FGM-B

Table 2

Predicted fracture initial angles for FGM-A and FGM-B

Load position
Kinking angle θ0

FGM-A FGM-B
A 6,97 11,82
B 4,98 9,63
C 0,0185 4,56

crack located on the rigid side of the FGM beam kinks less than 
the one on the soft side.

Based on the fracture criterion, the critical load is deter-
mined for every crack extension, and the obtained value is 
applied to the corresponding extension. Fig. 12 shows that the 
critical load required to the crack growth for FGM-A is greater 
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than that for FGM-B. It depends on the properties of the material, 
especially the critical stress intensity factor KIC, which corre-
sponds the material resistance to the crack propagation. A crack 
located in the stiff part of the beam requires a larger load to grow. 
This is illustrated in Fig. 13 where the stress distribution maps 
of the studied cases are presented. It is clearly shown that the 
stresses are more important for the FGM-A than the FGM-B for 
the same geometry and boundary conditions.

6. Conclusion

The main focus of this numerical study is to explore the ef-
fect of the material gradation direction on the fracture trajectory 
of ceramic/metal FGM beams subjected to mixed-mode load-
ing. Two sorts of functionally graded materials are examined; 
the FGM-A represents the beam with a parallel pre-crack to the 
material gradient, and FGM-B with a perpendicular pre-crack 
to the material gradation. The main findings are highlighted:
–	 The mode I SIF KI has a major effect on the driving force 

of the crack propagation, however KII defines the deviation 
from the stable crack propagation.

–	 The change of sign of T-stress could be an indication of the 
instability of the crack propagation.

–	 The crack in the FGM-B, follows a more curved trajectory 
and the crack propagation angle increases as the crack 
grows.

–	 The difference of the fracture trajectory can be related to 
the influence of the material gradation.

–	 The numerical results of the kinking angle θ0 demonstrate 
that the crack located in the rigid part of the specimen 
exhibits less deviation than the one on the soft part.

–	 The critical load required to the crack growth for FGM-A 
is greater than that for FGM-B. It depends on the value of 
critical stress intensity factor KIC.

REFERENCES

[1]	 A. Oral, J. Lambros, G.J. Anlas, J. of Applied Mechanics 75 (5) 
(2008). DOI: https://doi.org/10.1115/1.2936238

[2]	 Z.J. Zhang, G.H. Paulino, Int. J. of Plasticity 21 (6), 1195-1254 
(2005). DOI: https://doi.org/10.1016/j.ijplas.2004.06.009

[3]	R . Dimitri, N. Fantuzzi, Y. Li, F. Tornabene, Composite Structures 
160, 468-490 (2017). 

	DOI : https://doi.org/10.1016/j.compstruct.2016.10.067
[4]	 J.E. Dolbow, M. Gosz, Int. J. of Solids and Struc. 39 (9), 2557-2574 

(2002). DOI: https://doi.org/10.1016/S0020-7683(02)00114-2
[5]	 M.S. Kirugulige, H.V. Tippur, Experimental Mechanics 46 (2), 

269-281 (2006). DOI: https://doi.org/10.1007/s11340-006-5863-4
[6]	 Z.H. Jin, R.C. Batra, J. of the Mech. and Physics of Solids 44 (8), 

1221-1235 (1996). 
	DOI : https://doi.org/10.1016/0022-5096(96)00041-5
[7]	 P. Gu, R.J. Asaro, Int. J. of Solids and Struc. 34 (24), 3085-3098 

(1997). DOI: https://doi.org/10.1016/S0020-7683(96)00175-8

[8]	 M.A. Bouchelarm, M. Mazari, N. Benseddiq, J. of Failure Analysis 
and Prevention 17 (5), 919-934 (2017). 

	DOI : https://doi.org/10.1007/s11668-017-0322-3
[9]	 K.K. Choi, J.U. Cho, Arch. Metall. Mater. 62 (2), 1363-1366  

(2017). DOI: https://doi.org/10.1515/amm-2017-0209
[10]	O .-H. Kim, Y.C. Kim, Arch. Metall. Mater. 60 (2B), 1441-1444 

(2015). DOI: https://doi.org/10.1515/amm-2015-0149
[11]	 K. Yakoubi, S. Montassir, H. Moustabchir, A. Elkhalfi, C.I. Pruncu, 

J. Arbaoui, M.U. Farooq, Mathematics 9 (5), 507 (2021). 
	DOI : https://doi.org/10.3390/math9050507 
[12]	S . Montassir, H. Moustabchir, A. Elkhalfi, M.L. Scutaru, S. Vlase, 

Mathematics 9 (23), 2990 (2021). 
	DOI : https://doi.org/10.3390/math9232990 
[13]	 J. Zych, J. Piekło, M. Maj, A. Garbacz-Klempka, M. Piękoś, Arch. 

Metall. Mater. 64 (2) 765-771 (2019). 
	DOI : https://doi.org/10.24425/amm.2019.127611
[14]	 J.H. Kim, G.H. Paulino, Mechanics and Materials in Design 1 (1), 

63-94 (2004). 
	DOI : https://doi.org/10.1023/B:MAMD.0000035457.78797.c5
[15]	 J.H. Kim, G.H. Paulino, Int. J. for Numerical Methods in Eng. 53 

(8), 1903-1935 (2002). DOI: https://doi.org/10.1002/nme.364
[16]	 J.H. Kim, G.H. Paulino, Mechanics of Advanced Materials and 

Structures 14 (4), 227-244 (2007). 
	DOI : https://doi.org/10.1080/15376490600790221
[17]	S . Topal, S. Dag, Mathematical Problems in Engineering 2013 

(2013). DOI: https://doi.org/10.1155/2013/315176
[18]	N . Benamara, A. Boulenouar, M. Aminallah, Periodica Polytech-

nica Mechanical Engineering 61 (1), 60-67 (2017). 
	DOI : https://doi.org/10.3311/PPme.9682
[19]	 M. Chafi, A. Boulenouar, Materials Research 22 (2019). 
	DOI : https://doi.org/10.1590/1980-5373-MR-2018-0701
[20]	N . Benamara, A. Boulenouar, M. Aminallah, N. Benseddiq, 

Structural engineering and mechanics: An international Journal 
61 (3), 371-379 (2017). 

	DOI : https://doi.org/10.12989/sem.2017.61.3.371
[21]	 B.N. Rao, S. Rahman, Engineering Fracture Mechanics 70 (1), 

1-27 (2003). 
	DOI : https://doi.org/10.1016/s0013-7944(02)00038-3
[22]	 K.S.R. Chandran, I. Barsoum, Int. J. of Fract. 121, 183-203 (2003). 

DOI: https://doi.org/10.1023/B:FRAC.0000005346.83147.b2
[23]	 M. Dorduncu, I. Olmus, T. Rabczuk, Comp. Struct. 279, 114743 

(2022). DOI: https://doi.org/10.1016/j.compstruct.2021.114743 
[24]	D . He, D. Huang, D. Jiang, Theor. App. Fract. Mech. 111, 102852 

(2021). DOI: https://doi.org/10.1016/j.tafmec.2020.102852 
[25]	 K.D. Nguyen, C.L. Thanh, H. Nguyen-Xuan, M. Abdel-Wahab, 

Engineering with Computers 1-21 (2021). 
	DOI : https://doi.org/10.1007/s00366-021-01518-0 
[26]	C .E. Rousseau, H.V. Tippur, Acta Materialia 48 (16), 4021-4033 

(2000). DOI: https://doi.org/10.1016/S1359-6454(00)00202-0
[27]	 M.T. Tilbrook, R.J. Moon, M. Hoffman, Eng. Fract. Mechanics 

72, 2444-2467 (2005). 
	DOI : https://doi.org/10.1016/j.engfracmech.2005.04.001
[28]	 X. Jin, L. Wu, L. Guo, H. Yu, Y. Sun, Eng. Fract. Mechanics 76 

(12), 1800-1810 (2009). 
	DOI : https://doi.org/10.1016/j.engfracmech.2009.04.003

https://doi.org/10.1115/1.2936238
https://doi.org/10.1016/j.ijplas.2004.06.009
https://doi.org/10.1016/j.compstruct.2016.10.067
https://doi.org/10.1016/S0020-7683(02)00114-2
https://doi.org/10.1007/s11340-006-5863-4
https://doi.org/10.1016/0022-5096(96)00041-5
https://doi.org/10.1016/S0020-7683(96)00175-8
https://doi.org/10.1007/s11668-017-0322-3
https://doi.org/10.3390/math9050507
https://doi.org/10.3390/math9232990
https://doi.org/10.1023/B:MAMD.0000035457.78797.c5
https://doi.org/10.1002/nme.364
https://doi.org/10.1080/15376490600790221
https://doi.org/10.1155/2013/315176
https://doi.org/10.3311/PPme.9682
https://doi.org/10.1590/1980-5373-MR-2018-0701
https://doi.org/10.12989/sem.2017.61.3.371
https://doi.org/10.1016/s0013-7944(02)00038-3
https://doi.org/10.1023/B:FRAC.0000005346.83147.b2
https://doi.org/10.1016/j.compstruct.2021.114743
https://doi.org/10.1016/j.tafmec.2020.102852
https://doi.org/10.1007/s00366-021-01518-0
https://doi.org/10.1016/S1359-6454(00)00202-0
https://doi.org/10.1016/j.engfracmech.2005.04.001
https://doi.org/10.1016/j.engfracmech.2009.04.003


963

[29]	 J. Abanto-Bueno J. Lambros, Int. J. Solids Struct. 43 (13), 
3920-3939. DOI: https://doi.org/10.1016/j.ijsolstr.2005.05.025 

[30]	 J. Abanto-Bueno, J. Lambros, J. Experimental Mechanics 46 (2), 
179-196 (2006). DOI: https://doi.org/10.1007/s11340-006-6416-6

[31]	 B. Sabuncuoglu, S. Dag, B. Yildirim, Computational Materials 
Science 52 (1), 246-252 (2012). 

	DOI : https://doi.org/10.1016/j.commatsci.2011.06.010
[32]	 M.L.Williams, J. Appl. Mech. 24, 109-114 (1957). 
	DOI : https://doi.org/10.1115/1.4011454
[33]	 M.H. Meliani, Z. Azari, G. Pluvinage, Y.G. Matvienko, Eng. Fract. 

Mechanics 77 (11), 1682-1692 (2010). 
	DOI : https://doi.org/10.1016/j.engfracmech.2010.03.010 
[34]	 M.H. Meliani, Z. Azari, M. Al-Qadhi, N. Merah, G. Pluvinage, 

Composites Part B: Engineering 80, 126-133 (2015). 
	DOI : https://doi.org/10.1016/j.compositesb.2015.05.034 
[35]	 M.R. Ayatollahi, M.J. Pavier, D.J. Smith, Int. J. of Fract. 91 (3), 

283-298(1998). DOI: https://doi.org/10.1023/A:1007581125618 
[36]	F . Erdogan, G.C. Sih, Journal of Basic Engineering 85 (4) 519-525 

(1963). DOI: https://doi.org/10.1115/1.3656897 
[37]	 P. Bocca, A. Carpinteri, S. Valente, Int. J. of Solids and Struc. 27 

(9), 1139-1153 (1991). 
	DOI : https://doi.org/10.1016/0020-7683(91)90115-V 

[38]	H . Khazal N.A. Saleh, Mech. Adv. Mater. Struct. 26 (11) 975-983 
(2018). DOI: https://doi.org/10.1080/15376494.2018.1432786

[39]	 X. Chen, T. Luo, E.T. Ooi, E.H. Ooi, C. Song, Theo. App. Fract. 
Mech. 94, 120-133 (2018). 

	DOI : https://doi.org/10.1016/j.tafmec.2018.01.008 
[40]	R .D. Henshell, K.G. Shaw, Int. J. for Num. Meth. in Eng. 9, 

495-507 (1975). 
	DOI : https://doi.org/10.1002/nme.1620090302 
[41]	R .S. Barsoum, Int. J. for Num. Meth. in Engng. 10, 25-37 (1976). 

DOI: https://doi.org/10.1002/nme.1620100103 
[42]	 A. Boulenouar, M.A. Bouchelarm, M. Chafi, J. Interact. Des. 

Manuf. 18 (2), 649-658 (2024). 
	DOI : https://doi.org/10.1007/s12008-023-01726-6
[43]	 A. Boulenouar, M.A. Bouchelarm, N. Benseddiq, Steel Compos. 

Struct. 49 (3), 271-280 (2023). 
	DOI : https://doi.org/10.12989/scs.2023.49.3.271
[44]	 A. Boulenouar, I. Hebbar, M.A. Bouchelarm, Theor. App. Fract. 

Mech. 125, 103886 (2023). 
	DOI : https://doi.org/10.1016/j.tafmec.2023.103886
[45]	 M. Chafi, M.A. Bouchelarm, A. Boulenouar, N. Benseddiq, Mech. 

Solids. 58 (6), 2364-2381 (2023). 
	DOI : https://doi.org/10.3103/S0025654423601441

https://doi.org/10.1016/j.ijsolstr.2005.05.025
https://doi.org/10.1007/s11340-006-6416-6
https://doi.org/10.1016/j.commatsci.2011.06.010
https://doi.org/10.1115/1.4011454
https://doi.org/10.1016/j.engfracmech.2010.03.010
https://doi.org/10.1016/j.compositesb.2015.05.034
https://doi.org/10.1023/A:1007581125618
https://doi.org/10.1115/1.3656897
https://doi.org/10.1016/0020-7683(91)90115-V
https://doi.org/10.1080/15376494.2018.1432786
https://doi.org/10.1016/j.tafmec.2018.01.008
https://doi.org/10.1002/nme.1620090302
https://doi.org/10.1002/nme.1620100103

	Ł. Dudkiewicz1, M.R. Hawryluk￼1*, T. Szymańska￼2, S. Polak￼1,2, 
J. Ziemba￼1, Z. Gronostajski￼1 
	Application of Numerical Simulations for a Multi-Variant Analysis of the Construction 
of Tools Assigned for Hot Precision Forging of Small Size Forgings in Multiple Systems 

	D. Cristisor￼1, D.-L. Chicet￼2*, B. Istrate￼1, C. Stescu￼1, C. Munteanu￼1,3*
	Influence of TiO2 Alloying Percentage on the Morphology 
of APS-deposited Coatings from Cr2O3 Powders

	T. Puszczało￼1,2, H. Purzyńska￼3, M. Sroka￼1, K. Sówka￼1,2, A. Zieliński￼3
	The Microstructural Evolution of the Welded Joint of Super 304H Stainless Steel 
after 1000 Hours of Ageing at 700 and 750°C

	S. Shahari￼1*, M.F. Ghazali￼1,3, M.M. Al Bakri Abdullah￼2,3, 
Ch. Lih Tan￼1, M.T.M. Faheem￼2, V.E.B. Darmawan￼4
	Effects of Dolomite Geopolymer Filler on Mechanical Properties 
of Glass Fibre Reinforced Epoxy Composite

	S. Rangrej￼1*, S. Pandya￼1, J. Menghani￼1
	Investigation on the Microstructure, Microhardness and Tensile Strength 
of Stir-Casted A713-TiB2 Composites

	B. Keskin1*, B. Derin2
	Thermodynamic Investigation of Propagating Behavior in SHS for Equiatomic 
and Non-Equiatomic NiTi Alloys Using Factsage Software


