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ApplicAtion of improved b-vAlue And clustering AnAlysis  
for structurAl integrity Assessment of cfrp specimen under tensile loAding 

In the present study, the evolution of different failure mechanisms in carbon fiber reinforced polymer composites is being 
investigated using acoustic emission technique, unsupervised clustering technique and improved b-value analysis. The experimental 
part involved the realization of tensile tests of different materials, namely samples with [0/90]2S uniaxial layer configuration and 
[0/90]2S twill fabric samples. Both types of tests were monitored using one wideband acoustic emission sensor, while the tensile 
tests of twill fabric samples were additionally supplemented with resonant acoustic emission sensor to perform a comparative analy-
sis between datasets from resonant/wideband acoustic emission sensor. The comparative study itself was preceded by the failure 
mechanisms characterization process, which has been performed on the tensile test dataset of [0/90]2S layer configuration with the 
contribution of clustering technique. The subsequent analysis of the twill fabric resonant/wideband acoustic emission sensor datasets 
included the improved b-value technique, which relates the magnitude of fracture with the slope of the amplitude distribution. The 
presented results, especially in terms of the improved b-value technique applied to individual clusters, show enhanced ability to 
assess in more detail the actual structural integrity depending on the applied load.
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1. introduction

Structural integrity monitoring of composite structures is 
becoming increasingly important due to their more intensive use 
in many applications for aerospace, automotive, or medical sec-
tors, where Carbon fiber reinforced Polymer (CfrP) composites 
are being extensively involved. Their main benefit is chemical 
resistivity, very high strength/weight ratio, corrosion resistance, 
low coefficient of thermal expansion or the ability to tailor the 
composite layout to a specific application [1]. However, the main 
drawback of these materials is the complex nature of failure mech-
anisms including brittle-like failure manner [2]. This fact thus 
places complex demands on the methodology for assessing the 
structural integrity of components made of composite materials. 

one of the very specific non-destructive (NDT) methods, 
used among other things for the above purposes, is the acous-
tic emission (Ae) method. This NDT method is based on the 
detection of acoustic stress waves, resulting from a sudden 
stress redistribution owing to structural damage in micro/macro 
scale [3]. The given method also supports localization of the 

Ae sources using an array of sensors, which is a significant 
benefit for many industrial applications, where we encounter 
thin-walled geometries. The plate-like character enables the 
transformation of the initial voluminal waves into rayleigh or 
Lamb guided waves [4,5], which exhibit dispersion [6,7] and 
thus the Ae signal processing methodology is an integral part 
of the measurement procedure. 

The above-mentioned complexity of composite failure 
mechanisms has led a number of researchers to propose differ-
ent types of structural integrity assessment methodologies such 
as parameter-based analysis [8], signal-based analysis [9] or 
procedures using supervised/unsupervised pattern recognition 
approach [10,11]. In addition to the above types of analyses, it 
is possible to come across those that use only one parameter for 
their operation, namely the Ae signal amplitude. B-value analysis 
[12], or its derivative called improved b-value analysis (Ib) [13] 
has its origin in Gutenberg-richter relationship [14], commonly 
used in seismology. The Ib/b-value parameter is being calculated 
from the logarithmized amplitude distribution of Ae signals, 
which otherwise exhibit a power-law distribution in linear scale. 

1 VŠB-TeCHNICAL UNIVerSITy of oSTrAVA, fACULTy of MeCHANICAL eNGINeerING, DePArTMeNT of APPLIeD MeCHANICS, 17. LISToPADU 15/2127, 708 33 oSTrAVA-
PorUBA, CzeCH rePUBLIC

2 CzeSToCHowA UNIVerSITy of TeCHNoLoGy, fACULTy of MeCHANICAL eNGINeerING AND CoMPUTer SCIeNCe, DePArTMeNT of MeCHANICS AND MACHINe DeSIGN 
Fundamentals, 73 dąbrowsKiego str., 42-201 CzęstoChowa, Poland

* Corresponding author: michal.sofer@vsb.cz

BY NC

© 2023. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCom-
mercial License (CC By-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0/deed.en which permits the use, redistribution of 
the material in any medium or format, transforming and building upon the material, provided that the article is properly cited, the 
use is noncommercial, and no modifications or adaptations are made.

https://orcid.org/0000-0002-9253-5760
https://orcid.org/0000-0002-0067-0384
https://orcid.org/0000-0002-0937-5509


1018

In this paper, we introduce a case focused on the application 
of both the Ib value analysis and the combination of Ib value 
analysis and clustering technique on the tensile test results of 
CfrP [0/90]2S twill fabric samples. Part of the methodology is 
the implementation of a series of tensile tests of [0/90]2S layer 
configuration CfrP samples supplemented by Ae monitoring 
using a wideband sensor, which was used to characterize the in-
dividual damage mechanisms. In the next step, tensile tests of the 
twill fabric specimens were performed, where the monitoring of 
Ae was provided using resonant and wideband Ae sensors. Both 
datasets subsequently underwent Ib value analysis, with the dif-
ference that in the case of wideband Ae sensor dataset, the given 
method was additionally applied to the manually clustered data 
using the peak frequency. The overall analysis of both datasets 
points to the advantage of a generally comprehensive overview, 
which is provided by a combination of single-parameter failure 
mechanism characterization and Ib value analysis.

2. experiments

The experimental part involved two series of tensile tests, 
namely a series of three specimens with [0/90]2S uniaxial 
layer configuration (T1 samples) and a series of three twill 
fabric specimens also with [0/90]2S configuration (T2 samples). 
The T1 samples were made of high-performance carbon/epoxy 
prepreg CM-Preg T-C-230/600 CP004 39 with a nominal ply 
thickness of 0.25 mm, while the production process of the T2 
samples included LH 289 epoxy resin with curing agent H146 
and [0/90]2S 600g/m2 twill fabric (Havel Composites Cz Com-
pany Ltd., Czech republic). TABLe 1 and fig. 1 respectively 
present detailed information related to the dimensions of the 
samples as well as their stacking sequence. Both test series have 
been conducted on Testometric M500-50CT (50 kN load cell, 
accuracy: +/–0.5% of the load cell capacity) universal testing 
machine in deformation-controlled mode with an upper grip 
speed of 1 mm/min.

TABLe 1 

Characterisation of the test specimens

label/number of 
specimens

stacking  
sequence

thickness  
[mm]

T1/3 (90°, 0°)4S 2
T2/3 (90°, 0°)7 5

At this point it is necessary to state the reasons why the 
clustering analysis itself was not applied to T2 samples and 
instead the given process was preceded by the characterization 
of individual damage mechanisms on T1 samples:
1. The implementation of tensile tests of T1 samples is part 

of a larger study focusing on a complex process of failure 
mechanisms characterization in the case of CfrP com-
posites. The study involves realization of tensile/compact 
tension tests of unidirectional and cross-ply specimens.

2. The stacking sequence of T2 samples including the density 
of the used twill fabric predetermines the given samples for 
relatively high acoustic emission activity across individual 
types of mechanisms. The entire management of data pre-
processing and their subsequent clustering would therefore 
be much more time-consuming. If we identify effective 
indicators for individual failure mechanisms based on 
point 1, it is possible to perform time-saving filtering and 
sorting of the Ae data. 

2.1. Acoustic emission testing

The Ae activity has been monitored using Vallen AMSy-6 
Ae system with incorporated ASIP-2A signal processor card with 
frequency filter and sampling frequency set to 50-1100 kHz and 
5 MHz, respectively. The T1 specimens utilized wideband DwC 
B454 Ae sensor coupled with Vallen AeP5H 40 dB preamplifier, 
whereas the series of T2 specimens used in addition to the DwC 
B454 Ae sensor also Vallen VS150M resonant sensor coupled 
with Vallen AeP5H 34 dB preamplifier. The Ae hit detection 
mechanism uses a philosophy of a fixed detection threshold set to 
28 dBAe with an active frontend filter (emin > 10 aJ). A relatively 
low threshold value could be set due to the of the background 
noise rMS value not exceeding 16 and 14 dBAe in the case of 
Vallen VS150M/Vallen AeP5H 34 dB preamplifier and DwC 
B454/ Vallen AeP5H 40 dB preamplifier respectively. Possibly 
occurring low-energy signals originating from the background 
noise were eliminated by the aforementioned energy filter, 
the value of which was determined empirically. The Duration 
Discrimination Time and the rearm Time, responsible for hit 
generation and grouping process, were set to 100 µs. 

3. clustering analysis

The characterization of individual damage mechanisms 
was realized with the use of the unsupervised spectral clustering 
technique, which is an interesting alternative to k-means [8], 

(a)

(b)

fig. 1. Geometry of the tested specimens: (a) T1 sample; (b) T2 sample
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k-medoid, or fuzzy k-means approaches. A major advantage of 
this method is its simple implementation including much bet-
ter performance compared to the classical approaches such as 
the above-mentioned k-means [15]. The implementation of the 
method is introduced in [15] or [16].

To get the best possible clustering results, it is necessary to 
perform an analysis on a predefined group of features (see TA-
BLe 2) from which only the important ones need to be selected. 
The extraction process of the important features involved Lapla-
cian score (LS) technique introduced by X. He et al in 2005 [17].

The LS technique affiliates to each feature a real number 
in the range 0 to 1, thus reflecting its locality preserving power. 
According to the study by Ichenihi et al. [18], the important 
features can be defined as those having their LS score greater 
than 0.9. It has to be noted, that both clustering analysis, as well 
as the LS score computation procedure, have been conducted in 
MATLAB software.

In addition to the fact that only those features that are 
marked as important enter the clustering process, it is necessary 
to assess the optimal number of clusters. for these purposes, 
we used a metric called the Silhouette Coefficient (SC), which 
expresses the mean of the Silhouette values over all data points 
[19]. The Silhouette value s(i) for individual data point xi within 
the given dataset is defined as follows:

 
     

    max ,
i i

i i

b x a x
s i

a x b x


   (1)

where a(xi) refers to the average intracluster distance of the 
point xi related to all other points within the concerned clus-
ter, while b(xi) denotes the minimum of the average inter-
cluster distances of the point xi to all points in each other clus- 
ter [20].

4. improved b-value analysis

The implementation of b-value method can be found most 
often in a number of applications that have to do with a damage 
assessment in civil engineering [21,22] or composite science 
[12,23]. However, the origins of this method are linked with 
earthquake seismology, where it relates magnitude of the earth-

quake M with the total number of earthquakes N(M) of magnitude 
larger than M also known as Gutenberg-richter relation [12]: 

  10log N M a bM    (2)
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    (3)

where a,b denote empirical constants and n (M) refers to the 
number of earthquakes of magnitude M. from eq. (2) is obvi-
ous, that the b-value coefficient denotes the negative gradient 
of the log-linear plot of the event and magnitude and therefore 
represents the slope of the amplitude distribution [12]. The 
Gutenberg-richter formula can be for the purposes of Ae tech-
nique modified to the following definition:

 10 10log log
20

AEdB
AE V AE

A
N a bA N a b       (4)

where AμV denotes the AE event amplitude in μV and AdBAE refers 
to the amplitude in dBAE. The b-value concept served as a basis 
for improved b-value method, which incorporates the statistical 
parameters of the amplitude distribution such as the mean value 
(μ) and standard deviation (σ) – see fig. 2 [23]. 

The slope of the amplitude distribution is then calculated 
using the following relation:
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where α1, α2 denote the multiples of standard deviation (in our 
case set to 1).

TABLe 2

Characterisation of the involved Ae features

feature description
Amplitude The largest voltage peak of the given Ae hit in dBAe (db rel. to 1 µv before the input to the preamplifier) 
risetime time interval in µs between the first threshold crossing and the reached maximum amplitude in µs.
Duration time interval in µs between the first and the last threshold crossing in µs.
energy Integral of the squared Ae signal over time in aJ.
fp – Peak frequency frequency corresponding to the maximum magnitude in the frequency spectrum in kHz.
fc – freq. centroid Centre of mass of the frequency spectrum in kHz.
fpw – weighted peak frequency Square root of the product between the peak frequency and frequency centroid in kHz.
rA value risetime/peak amplitude ratio (in µs/dBAe).

fig. 2. b-value/improved b-value definition [21]
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5. results and discussion

5.1. characterization of failure mechanisms

The characterization of failure mechanisms was carried 
out using the T1 samples dataset, on which Scanning electron 
Microscopy (SeM) imaging has been applied in addition to the 
clustering analysis. fig. 3 reports four detected microscopic 
failure mechanisms, namely: fiber failure (fig. 3b), fiber pull-out 
(fig. 3b), fiber/matrix debonding (fig. 3b) and matrix cracking 
(fig. 3c), which subsequently induces delamination (fig. 3a).

(a)

(b)

(c)

fig. 3. SeM analysis of T1 specimen: (a) General view including de-
lamination; (b) fiber failure including fiber pull-out and fiber/matrix 
debonding; (c) Matrix cracking including fiber/matrix debonding

Let us now return to the clustering process itself, where the 
important features were selected according to the LS technique 
and the score value greater than 0.9 (see chapter 3): weighted 
peak freq., Peak freq., Amplitude, and freq. centroid – see fig. 4. 
According to the clustering analysis is the optimal number of 
clusters equal to 3 (SC = 0.722). fig. 5 displays the already 
clustered data in the form of Amplitude/energy versus fp de-
pendencies.

fig. 4. results of LS technique

Although, according to the application of the spectral 
clustering method, clustering into three clusters appears to 
be optimal, it can be noted that cluster No. 2 consists of two 
separate clusters. The fact that we did not reach the optimum in 
the form of four clusters (four reported failure mechanisms in 
total) is mainly due to the ratio of Ae hits in the range of peak 
frequency 200-400 kHz and 400-600 kHz. Based on our more 
extensive research activities within this field, which also involved 
SeM analysis, we have concluded that the general parameter 
for distinguishing the individual damage mechanisms between 
each other is the peak frequency. The obtained relation between 
the given failure mode and peak frequency is summarized in 
TABLe 3 and is largely consistent with [24].

It is necessary to point out that the mentioned parametric 
selection in the sense of peak frequency is possible in the given 
case especially for very small dimensions of the active zone 
within which the damage process takes place. In the case of real 
structures, where a much larger distance between the sensor and 
the potential source of acoustic emission is assumed, it is much 
more appropriate to choose a derived parameter such as weighted 
peak frequency (see TABLe 2). 

TABLe 3 

failure mechanisms characterization using peak frequency parameter

failure mechanism peak frequency range [kHz]
Matrix cracking/Delamination 50÷200

Debonding 200÷400
fiber failure 400÷600

fiber pull-out >600
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5.2. ib-value analysis of t2 sample series tensile test

The application of the Ib-value analysis to the selected 
dataset from T2 samples series was of three types: 
• ib-value analysis of vs150m resonant sensor dataset.
• ib-value analysis of dwC b454 wideband sensor dataset.

• ib-value analysis of dwC b454 wideband sensor dataset, 
which has been filtered using the peak frequency ranges 
(see TABLe 3).
fig. 6 displays the Ib-value versus upper grip displacement 

curves for both datasets, i.e. VS150M and DwC B454. The 
exponent value has been calculated from dataset containing 

(a)

(b)

fig. 5. results of the clustering analysis: (a) Amplitude versus fp; (b) energy versus fp

fig. 6. Ib-value versus upper grip displacement: Vallen VS150M and DwC B454 datasets
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200 samples, while these segments share the 50 samples over-
lap. The Ib-value curves were additionally treated with moving 
mean filter (10 samples). As can be seen, the results from both 
datasets are somewhat different in terms of the trend. However, 
even so it is possible to find there some signs of similar behav-
ior, which is especially true in the events of sudden force drops. 
Under these circumstances, it is possible to observe a slightly 
higher sensitivity to the given phenomenon in the case of the 
VS150M sensor, even though it shows a more monotonous curve 
compared to DwC B454 result. The generally higher sensitiv-
ity of the VS 150 M sensor compared to the DwC 454 sensor 
is naturally due to the construction of the sensor itself, which, 
on the other hand, does not provide resolution in the area of the 
signal frequency spectrum.

on the other hand, if we take into account the overall nature 
of the Ib-value curves for both sensors, the DwC B454 curve 
provides a much better response related to the current state of 
the structural integrity, which is especially evident after reach-
ing the upper grip displacement of 2.5 mm when there is a rapid 
decrease in the exponent but without a visible force drop. An 
explanation of such behavior can be found if we perform an Ib-
value analysis on the DwC B454 dataset that has been filtered 
using the peak frequency for individual failure mechanisms 
(fig. 7).

Between the upper grip displacement value of 2 mm and 
2.5 mm are we noticing a rapid development of matrix cracking 
followed by delamination and fiber/matrix debonding, where the 
more extensive fiber break occurs after reaching 3.4 mm of the 
upper grip displacement. Subsequently, it is possible to register 
extremely low values of the exponent for all three dominant 
mechanisms up to the rupture itself. The only mechanism, which 
cannot be assessed due to the small number of detected Ae hits 
is fiber pull-out.

4. conclusions

In this paper, we dealt with the application of methodology 
involving improved b-value analysis and clustering technique 

to perform a structural integrity assessment of CfrP samples 
during the tensile test. The methodology consisted of the ap-
plication of Ib-value technique on filtered dataset (according 
to peak frequency) of wideband Ae sensor including further 
comparison with ones where Ib-value technique has been applied 
on the wideband/resonant Ae sensor dataset without additional 
filtering. The obtained results indicate the ability to comprehen-
sively evaluate the structural integrity status in terms of Ib-value 
exponent for individual failure mechanisms which makes it 
possible to reveal the extensive matrix cracking, fiber/matrix 
debonding or fiber failure. 

It can be stated that in practice the proposed methodology 
would serve as an extension to conventional approaches, listed 
for example in the eN 15857 or ASTM e1067 standards, which 
stand out for their robustness and to a certain extent also for their 
general simplicity. However, as it was mentioned earlier, due 
to the fact that in real structures the real distance between the 
network of sensors and the position of the Ae source is many 
times greater than in our case, it is also necessary to take into 
account the effect of the change in the frequency spectrum on 
the travelled distance of the wave, while we must not forget the 
influence of the sensor type, geometry of the tested structure or 
the material itself (number of layers, layout, fiber/matrix material 
properties). The mentioned factors therefore greatly influence 
the use of the peak frequency itself as a main parameter for 
the subsequent data evaluation process. for that reason, in real 
cases, it is necessary to choose a more robust parameter in the 
form of a weighted peak frequency or, alternatively, to perform 
a certain type of correction in the frequency spectrum area based 
on the detected position of the source, as in the case of distance 
corrected peak amplitude technique.
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