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FUZZY LOGIC ENHANCEMENT OF MATERIAL STRAIN HARDENING DATA OBTAINED IN THE HEYER’S TEST 

Fuzzy logic determination of the material hardening parameters based on the Heyer’s method was applied in this research. 
As the fuzzy input variables, the length of two measuring bases and the maximum force registered in the Heyer’s test were used. 
Firstly, the numerical experiment (the simulation of the fuzzification of the input data) with the assumed disturbance of input 
variables was performed. Next, on the basis of experimental investigations (eleven samples made from the same material), the 
membership functions associated with the input data were created. After that, the fuzzy analysis was examined. Fuzzy material 
hardening constants obtained by means of the α-level optimization and the extension principle methods were compared. Discrete 
values of the hardening data are found in the defuzzification process, by application of the mass center method.

Keywords: fuzzy logic, plasticity, material hardening parameters, Heyer’s method

1. Introduction

In various materials forming processes, many parameters 
are usually imprecise or uncertain. Load magnitudes, material 
data and friction coefficient might change from one product to 
another. Moreover, properties of the final products might vary 
– even if produced from the same material. The experimental 
determination of the influence of the variation of the parameters 
on the final results is often problematic and time-consuming. 
It has led to the development of non-deterministic computer 
methods in mechanical engineering [1].

Soft computing-based methods accept the imprecision and 
uncertainty of material parameters. One of the most popular 
approaches is the fuzzy sets theory. Fuzzy logic enables to find 
the system response to the external factors assuming that the 
input data are fuzzed. Fuzzy theory is especially welcomed in 
problems where the information about the process is uncertain 
or partially certain, as well as, when the knowledge about the 
mathematical model is unknown [2]. One of the most important 
advantages of the fuzzy logic analysis is a possibility of finding 
the most reliable solution (crisp value) which cannot be ensured 
in classical experimental investigations. 

Fuzzy logic is mostly applied in control processes. Mi-
crowave ovens or washing machines are equipped with fuzzy 
logic controllers. ABS systems are also exemplary application. 
Apart from these, the fuzzy theory is also applied in academic 
research. This method is being tested in many fields of research, 
e.g. in the powder metallurgy, composites forming, and in theory 
of plasticity [3-6]. In [7] the response of the Bodner-Partom 

material to external loads with the use of fuzzy set theory was 
investigated. In [8] fuzzy logic was used for determination of 
the best arrangement of the composite materials. The influence 
of the input parameters (mixing time, rotation speed, fibers 
fraction and lengths) on the tensile strength and destruction of 
composite materials was examined. The fuzzy set theory was 
also used [9] for diagnosis of casting defects. These and others 
not mentioned here examples confirm the usefulness of the fuzzy 
logic in different practical applications. 

In this research the Hollomon strain hardening equation (1) 
is considered

 σ = Cφn (1)

where σ and φ are true stress and true strain, respectively, and 
C and n are material data of the research interest. It should be 
mentioned that the relation (1) has some limitations. For strain 
less than 0.2% the material response is elastic and the Hooke’s 
law should be applied instead. The Hollomon equation does not 
consider the saturation of the yield stress and provides unrealistic 
response for a large strain, therefore. It does not consider the 
Bauschinger effect and cannot be applied to yielding caused by 
the reverse load. Despite these limitations, the Hollomon model is 
quite often used by researches and engineers in plasticity theory.

A correct determination of the aforementioned parameters 
has a great significance in material processing and forming and/or 
in numerical calculations. In this research the application of the 
fuzzy logic for the determination of material strain hardening 
parameters is presented. Two fuzzy methods: α-optimization and 
the extension principle are described and compared, including 
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their advantages and disadvantages. As the fuzzy input variables, 
the lengths of two measured bases from Heyer’s test and the 
maximum force registered were used. The fuzzy logic analysis 
provides not only the information about the variation of n and 
C parameters, but also allows finding the level of acceptance of 
these parameters. In order to select the most reliable values of 
considered parameters, the defuzzification of the output member-
ship functions is made with the use of the mass center method.

2. Fuzzy logic application in engineering problems

The fuzzy theory introduced by Zadeh in 1965 is used for 
modeling of complex systems for which mathematical model 
or/and data are unknown [10-11]. Fuzzy set is an expansion of 
the classical sets [12] for which membership values are zeros or 
ones. In the fuzzy sets theory values (of membership functions) 
change in range between 0 and 1. As above, fuzzy set A might 
be defined as follows (Eq. 2):

 A = {x,μA(x) : x  X} (2)

where: X is input space, x are elements of X input space, μA(x) 
is a membership function of x in A fuzzy set.

In materials forming, the X input space may represent 
selected properties of material. Each x element of this space 
(x  X) presents the specific material property.

In Eq. (2), fuzzy input variables are described by means 
of their membership functions μ(x). They determine the level 
of truth that a variable has a specific value [13]. Membership 
functions also present the scattering of input parameters and the 
acceptance level of dispersion [4]. They might be created on the 
basis of measurements or researcher’s experience. Triangular, 
trapezoidal, and pseudo-Gaussian membership functions are 
usually used in the fuzzy logic [14]. The pseudo-Gaussian dis-
tribution with finite support is adequate for the most problems 
but in practice linear distributions are commonly applied [10] 
because their satisfy the partition of unity condition [13].

In numerical calculations, the fuzzy set theory is aimed 
to the mapping of fuzzy input variables into the result space 
(Fig. 1). It is realized by means of analysis algorithm which 
includes the mathematical model. As the result, output variables 

characterized by their membership functions are obtained. Two 
methods: α-optimization and the extension principle are conside-
red here.

The extension principle presents the mapping of input set 
X on Z fuzzy set with the use of mapping function z = f (x, y). 
The membership function μ(z) of Z fuzzy set is calculated with 
the use of sup-min operator according to the following formula 
(Eq. 3) [7]:

 sup min , , , z x y z f x y  (3)

where: sup min are mathematical operators, μ(x) and μ(y) are 
membership functions of x and y input variables, z is an output 
variable, μ(z) is a membership function of z output variable.

The extension principle is very sensitive to a number of 
combinations of x and y elements of fuzzy input data. The ap-
plication of the sup operator in the case of floating-point numbers 
can be done for certain ranges of z i.e. z ± Δz, where Δz is a small 
number. Thus, the range of z variation should be divided into 
many subdomains, each of the length of 2Δz. Small amount of 
subdomains provides a jagged solution. Better results might be 
achieved for an increased number of subdomains. According 
to [10], acceptable smoothing of z membership function can be 
obtained if the number of subdomains >100. It is important that 
the smooth envelope of μ(z) might be obtained only for dense 
search of the fuzzy input data. In the case of sophisticated map-
ping function it could be very time-consuming, and therefore 
the extension principle may became not effective. The detailed 
information about the extension principle method is included 
in [15].

Better results with the limited number of computations 
of the mapping function might be achieved by the use of 
α-optimization method. This concept relies on the discretiza-
tion of support and the selection of sufficiently high number of 
α-levels. The subspace assigned to αK level  [0; 1] is determined 
by extreme xαkl and xαkr values (Fig. 2). For particular α-level of 
fuzzy input variables, the minimum zαkl and maximum zαkr values 
are searched [7, 10]. Extreme z values for all α-levels define the 
shape of output membership function μ(z).

Fig. 2. The α-optimization method in fuzzy analysis

The α-optimization method might be used only if the map-
ping operator is continuous and the fuzzy result space is convex. 
This concept gives better results when compared to an extension 
principle and requires less calculations. In comparison to the 
extension principle, α-optimization method enables to obtain 
a definitely smoother shape of the output membership function. 

Fig. 1. The membership functions associated with input and output 
variables
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In extension principle, such a smooth line might be achieved 
only for very dense searching of the input fuzzy variables [10]. 
For this reason, the α-optimization method is the main numeri-
cal tool used in presented research. The extension principle is 
applied here additionally in order to check the consistency and 
convexity of the results.

In defuzzification step, fuzzy output variables are trans-
formed back into discrete value in order to search for the most 
reliable solution. The defuzzification of z variable might be 
obtained by the use of the mass center method. This concept is 
based on searching for the center of space below the membership 
function plot according to the following formula (Eq. 4) [13]:

 
0
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( )

z z dz
z

z dz
  (4)

where: z0 is the most reliable value of z variable, μ(z) is the 
membership function of z.

3. Numerical simulation

At the beginning, the fuzzy logic analysis is made for the 
single exemplary specimen (Fig. 3). In numerical test as the 
fuzzy input variables the lengths of two measuring bases lB and 
lC and the maximum force Pmax are considered. This allows a true 
strain and true stress calculations in sections B and C (true stress 
calculation assumes satisfaction of the incompressibility condi-
tion for plastic deformation). The output fuzzy results are: strain 
hardening index n and strength coefficient C (Fig. 4). 

Fig. 3. Dimensions of considered sample

Fig. 4. The mapping of fuzzy input variables into a result space

The range of lB, lC and Pmax variations can be assumed from 
the experience gained in the previously made Hayer’s tests. The 
following ranges of lB, lC and Pmax are assumed: [33.7; 34] mm, 
[32; 32.4] mm and [4.5; 4.8] kN, respectively. On the basis of 
the aforementioned values, triangle membership functions were 
built (Fig. 5). The membership functions maximums are reached 
for: lB = 33.9 mm, lC = 32.2 mm and Pmax = 4.7 kN. 

The n and C strain hardening parameters [16] can be cal-
culated from the formulas (Eq. 5).
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where φB and φC are true strains in B and C segments of speci-
men, Pmax is the maximum force registered in the tensile test. 

Eq. (5) constitutes the mapping model of the considered 
problem. In the numerical simulation the following specimen 
dimensions are assumed: g0 = 1 mm, b0B = 16 mm, b0C = 17 mm, 
l0B = 30 mm, l0C = 30 mm, where: g0 – thickness of specimen, 
b0B and b0C – widths of B and C segments of specimen, l0B and 
l0C – initial lengths of B and C segments of specimen, lB and lC 
– lengths of B and C segments of specimen after the tensile test.

Fig. 5. Assumed membership functions for fuzzy input variables

The fuzzy results for n and C obtained by the use of 
α-optimization and extension principle methods are presented 
in Fig. 6. The maximum membership functions (value 1) are 
obtained for n = 0.205 and C = 510.9 MPa. The black envelope 
represents the solution obtained for α-optimization method, 
small blue ‘x’ characters represent the solution of the extension 
principle without the sup operator. 

Fig. 6. Fuzzy results obtained by means of α-optimization method

The last step of presented numerical experiment is the 
search for the most reliable n and C values. The defuzzification 
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step provides the mapping of fuzzy output variables into discrete 
values (Fig. 7). In this research, the mass center method was ap-
plied. For demonstrative fuzzy analysis, the mass centers of n and 
C membership functions are 0.208 and 512.26 MPa, respectively. 
These are the most reliable values of n and C parameters for 
fuzzy logic analysis of the Heyer’s method. 

Fig. 7. Crisp values of n and C parameters obtained with the use of 
mass center method

4. Description of experimental research

Appropriate determination of strain material hardening 
data (Eq. 1) requires an investigation of several samples. In this 
research eleven samples made from DC04 low-carbon steel were 
used as shown in Fig. 8. The dimensions of specimens used in 
a tensile tests are shown in Fig. 8.

Fig. 8. Specimens used in tensile test

The laboratory research was carried out as follows. Two 
measuring bases with the length of 30 mm were marked in B 
and C zones. After that, the lengths of l0B and l0C segments were 
measured by Nikon MM-800 measuring microscope (Nikon, 

Japan) (Fig. 9) with 1μm measurement precision. The widths 
of b0B and b0C segments were determined with the use of digital 
caliper. The thickness g was measured by thickness gauge. 

Fig. 9. Measurement of l0B and l0C lengths by NIKON MM-800 mi-
croscope

The tensile tests were carried out at room temperature on 
ZWICK Z030 testing machine (Fig. 10) according to PN-EN 
ISO 6892-1:2016-09 [17]. For all samples, the maximum load 
was registered. The tensile tests were carried out until the sample 
s are broken (Fig. 11). The lengths of lB and lC segments after 
tensile test were measured on a microscope. 

Fig. 10. ZWICK Z030 testing machine used in the laboratory research
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Fig. 11. Tensile test; appearance of “neck” (a), cracked sample (b)

The following formulas were applied in calculations [16]:
• true strain in B (φB) and C (φC) segments of specimen (Eq. 6)
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• true stress in B (σB) and C (σC) segments of sample (Eq. 7)
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• actual cross-sections of B (SB) and C (SC) segments (Eq. 8)
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Strain hardening index n and strength coefficient C were 
calculated from Eq. (5).

5. Fuzzy analysis of experimental data

The results of tensile tests carried out under laboratory con-
ditions are presented in Table 1. They were later on entered into 

the fuzzy analysis. Basic statistical parameters as: mean average 
(M), standard deviation (SD) and coefficient of variation (V) are 
also included in Table 1. 

On the basis of the tensile test results, the fuzzification of 
lB, lC and Pmax was done. For this purpose, the aforementioned 
values were lumped together in groups (Fig. 12). After that, 
membership functions for lB, lC and Pmax were developed. Tri-
angular membership functions are appropriate for lB and Pmax. 
The trapezoidal membership function is adequate for lC variable. 

TABLE 1

Results of a tensile test for eleven steel samples (S1-S11)

Symbol g0 b0B b0C l0B l0C Pmax lB lC φB φC
[mm] [mm] [mm] [mm] [mm] [kN] [mm] [mm] [-] [-]

S1

1.00 15.86 16.96 30.00 30.02

4.90 34.00 32.29 0.125 0.073
S2 4.84 33.87 32.25 0.121 0.072
S3 4.97 33.94 32.22 0.123 0.070
S4 4.93 33.99 32.40 0.125 0.076
S5 4.90 33.97 32.31 0.124 0.074
S6 4.85 33.81 32.14 0.120 0.068
S7 4.90 33.88 32.20 0.122 0.070
S8 4.94 34.09 32.45 0.128 0.078
S9 4.95 34.03 32.31 0.126 0.073
S10 4.95 34.27 32.38 0.133 0.076
S11 4.92 34.06 32.29 0.127 0.070

M 4.91 33.99 32.29 0.124 0.073
SD 0.05 0.12 0.09 0.004 0.003

V [%] 0.92 0.37 0.29 2.93 3.93

Fig. 12. Histograms of lB, lC and Pmax measurements and assumed 
membership functions
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One can see in Fig. 10 that membership functions are adjusted 
for the following ranges of lB, lC and Pmax variations: [33.81; 
34.30] mm, [32.11; 32.50] mm and [4.81; 5.00] kN, respectively. 

The n and C fuzzy results obtained with the use of extension 
principle and α-optimization are shown in Fig. 13. A random 
dense search for all fuzzy input variables is made. 

Both resulting membership functions are nonlinear. They 
present quite a similar shape. It is worth highlighted that for 
highly non-symmetrical membership function associated with 
Pmax fuzzy variable, shapes of output membership functions will 
be clearly different. It can be seen in Fig. 13, that the variation of 
n and C parameters is [0.194; 0.261] and [514.10; 615.30] MPa, 
respectively. For n = [0.213; 0.236] and C = [549.1; 576.3 MPa], 
the membership functions receive maximum value. Results ob-
tained for both tested methods are similar, but the α-optimization 
envelope is much smoother. 

The final step of the fuzzy analysis is the conversion of the 
fuzzy output sets into crisp values. This way the discrete values 
of n and C parameters are found. There are several alternative 
defuzzification algorithms, such as: height method, centroid 
method or level rank method [7,13]. In this research the algorithm 
based on searching for the mass center of output membership 
functions was applied. The discrete values of n and C are 0.226 
and 563.04 MPa, respectively (see Fig. 13). These are the most 
reliable strain hardening parameters for the tested steel samples. 

Fig. 13. The n and C fuzzy results and their discrete values

For the classical discrete analysis, mean values of n and 
C of investigated eleven samples are 0.221 and 557.04 MPa, 
respectively. The comparison of hardening curves for n and 
C values obtained both by means of fuzzy logic, as well as, with 
the use of discrete analysis is presented in Fig. 14.

Fig. 14. The hardening curves for n and C values obtained by means of 
fuzzy logic and classical analysis

It can be observed that the fuzzy analysis gives little overes-
timated results when compared to typical experimental research. 
The differences are caused by the fact that the fuzzy analysis 
unlike classical one, includes the characteristic of the mapping 
model (Fig. 15). Moreover, fuzzy logic includes the statistics of 
both input and output parameters. In Fig. 15a there is presented 
a special case of the fuzzy analysis which is equivalent to discrete 
approaches. All input parameters are taken into consideration 
with the same weights (rectangular membership functions), 
statistic is made only for output variables, and the influence of 
the mapping model on results is neglected.

a)

b)

Fig. 15. Classical analysis (a) vs. fuzzy analysis (b)

6. Summary and conclusions

The fuzzy set theory is an efficient tool for solving engineer-
ing problems for which mathematical model or data are uncertain 
to some extent. Fuzzy logic investigates the influence of selected 
parameters on the model response assuming that input parameters 
are fuzzed. The fuzzy set theory also enables to find the most 
reliable (crisp) value of fuzzy output parameters.

In this paper, the fuzzy analysis was applied in calculations 
of strain hardening n and C parameters resulting from the Heyer’s 
method. As the fuzzy variables, the lengths of two measuring 
bases and the maximum force are selected. The comparison 
of results obtained by means of classical statistics and results 
obtained by application of the fuzzy set theory are presented.
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From the performed research the following remarks can 
be concluded:
1. The fuzzy analysis might be applied for a single sample 

in the limiting case. In the presented article, the numerical 
simulation was made for exemplary specimen in order to 
investigate in general the influence of input variables on 
the final results. It is very important in cases for which the 
number of measurements is limited by: the cost, access to 
specimen, short-period of time, etc. In these cases the fuzzy 
logic allows to obtain the most reliable solution (crisp value) 
in an objective way. The correct definition of the member-
ship functions required in the fuzzy analysis can be based 
on the experts knowledge.

2. The shape of the input membership functions affects the 
shape of output membership function but does not influence 
significantly on the crisp value (the most reliable solution). 

3. The shape of both resulting n and C membership functions 
slightly differs. The small differences are caused by the 
fact that C parameter depends on the length of two lB and 
lC measuring bases and the maximum force registered dur-
ing the tensile test. The n strain hardening index depends 
only on lB and lC values. Because the distribution of the 
maximum force was symmetrical, the shapes of n and C 
membership functions are similar. Considerable differ-
ences will be observed if the distribution of Pmax will be 
non-symmetric.

4. The discrete values of n and C membership functions 
obtained in fuzzy analysis were 0.226 and 563.04 MPa, 
respectively. Average n and C values obtained from the ex-
perimental research are 0.221 and 557.04 MPa, accordingly. 
The differences are caused by the fact that the fuzzy set 
theory considers the characteristic of the mapping model. If 
the number of measurements registered in the experimental 
investigation is sufficient, the solution based on statistics 
as well as the fuzzy logic results are similar – see Fig. 14.

5. As the fuzzy set theory might be used as enhancement of 
the experimental data analysis, it can provide the reference 
solution for other numerical methods.

6. The application of the fuzzy logic in engineering problems 
can reduce the cost and time of the experimental research.
In this paper, fuzzy logic was implemented in relatively 

simple tensile test. The Hollomon equation used here as the 
mapping model provides explicit formula for stress vs. strain. For 
more advanced models based on the yield condition associated 
with the flow rule, the numerical integration is required which 
complicates the mapping model and its numerical implementa-
tion. The obtained results have shown the usefulness and the 
potential of this method in mechanical engineering, as well as, 

in plasticity theory. The convergence of the statistical and the 
fuzzy sets analyses (sufficient number of measurements was 
available) has proven the reliability of the proposed approach.

Further research will be focused on the application of the 
fuzzy set theory for adjusting various elastic-plastic material 
models to the experimental stress-strain curves obtained in cyclic 
tension-compression tests. In future, the proposed approach will 
be extended on models including more than two material param-
eters (Ramberg-Osgood, Voice isotropic hardening, Frederick-
Armstrong or Chaboche non-linear kinematic hardening) which 
can give more realistic description of the material response.
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