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QUANTITATIVE AND QUALITATIVE METHODS FOR EVALUATION OF MEASUREMENT SIGNALS ON THE EXAMPLE OF
VIBRATION SIGNALS ANALYSIS FROM THE CORPS OF PROTOTYPE RECLAIMER REGMAS

ILOŚCIOWE I JAKOŚCIOWE METODY OCENY SYGNAŁÓW POMIAROWYCH NA PRZYKŁADZIE ANALIZY SYGNAŁÓW
WIBRACJI PROTOTYPOWEGO REGENERATORA MAS FORMIERSKICH REGMAS

The article presents examples of vibration signals analysis derived from the research of prototype reclaimer REGMAS.
After the division of the time-frequency analysis methods of measuring signals, their non-parametric and parametric models
were estimated. At the end of the article the summary and conclusions were set.
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W artykule zaprezentowano przykłady analizy sygnałów wibracji uzyskanych z badan prototypowego regeneratora mas
formierskich REGMAS. Po dokonaniu podziału czasowo-częstotliwościowych metod analizy sygnałów pomiarowych, wyzna-
czono ich modele parametryczne i nieparametryczne. Na końcu zawarto podsumowanie oraz wnioski końcowe dotyczące
przedstawionych analiz.

1. Introduction

The effective source of information about the phenomena
occurring during the operation of machinery are appropriate-
ly selected and correctly applied numerical methods of signal
analysis. Properly prepared and analyzed measuring signals
can be use to control device, monitoring the performance of
the device or use to their wider diagnosis. In this article the
analysis of existing methods of measuring signals and the
examples of vibration signals analysis which were obtained
during operation of reclaimer prototype Regmas [1, 2, 3] is
presented.

2. Classification of measurement signals

Occurring in the natural phenomena signals which are
energy and information carriers can be divided into determin-
istic and random signals [5]. The deterministic signals are
signals whose properties are described using the strict math-
ematical dependencies. Physical phenomena which are not
determined (cannot be described by strict linear differential
equations or nonlinear differential equations) are represented
by the averaging static characteristics of their signals. Such
signals are called random. The classification of the nature of
the signal (deterministic or random) mainly concerns the pos-
sibility of its repeated plays with measurement uncertainty
(provided that identical conditions are assured to carry out

experiments). The deterministic signals respectively are peri-
odic and non-periodic signals. In turn, the random signals are
divided into stationary signals and transient signals. Measured
vibrations signals of the molding sand reclaimer Regmas were
qualified as stationary random signals with additional assump-
tion of their ergodicity [5].

3. Time-frequency signals analysis methods

Currently the most used tools in the analysis of the mea-
suring signal are frequency and time-frequency signal analysis
methods. The popularity of these methods results from pe-
riodicity of many physical phenomena occurring during the
operation of machinery and equipment, as well as the trace-
ability of the variability phenomena which periodicaly evolves
in time [8]. The simplified scheme of time-frequency signal
representation resulting from estimation methods (paramet-
ric or non-parametric) and structures equations (linear and
non-linear) are presented in figure 1. In the next part of this
article the parametric models and spectrograms used by the
authors to describe vibration signals (obtained from working
reclaimer) will be discussed in more details.

3.1. Parametric methods

Parametric models describing the phenomena occurring
during the operation of the machinery must meet the crite-
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rion of the optimal fit to the actual observation of physical
phenomena.

Fig. 1. The division of time-frequency signal analysis methods [8]

Assuming that there is no known reason for the evoke of
the activation of phenomena (or it is not available to measure
the signals on the entrances of the device), one can advance a
hypothesis that recorded the stationary random signal x(t) is a
response of a linear dynamic system activated by white noise
ε(t) (Fig. 2).

Fig. 2. The model of the linear dynamic system temporarily activated
by white noise

The general equation of the time series model which is
the autoregressive with moving average ARMA model is ex-
pressed as follows:

x (t) =
C(q−1)
A(q−1)

· ε(t) (1)

where:
x(t) – the linear and stationary time series,
ε(t) – white noise,
A(q−1),C(q−1)−the polynomials of na, nc order. The ra-

tional functions, with delay operator q−1, are expressed as
follows:

A
(
q−1

)
= 1 + a1 · q−1 + a2 · q−2 + · · · + ana · q−na

C
(
q−1

)
= 1 + c1 · q−1 + c2 · q−2 + · · · + cnc · q−nc

In this model, the current value of the process is a finite linear
combination of the values of this process in earlier moments
of time and previous values of white noise signal. Given in
equation (1) nc = 0, the ARMA model simplifies to the autore-
gressive model AR (2). The parameters of this model are en-
tirely linear combination of the previous values of the process
caused the white noise signal ε(t):

x (t) =
1

A(q−1)
· ε(t) (2)

The model in which the current value of the process is a fi-
nite linear combination of the previous value of the stationary
random process ε(t) with zero mean and constant variance is
called the model of the finite moving average process MA and
is expressed as follows:

x (t) = C(q−1) · ε(t) (3)

The MA model has not found wider spectral analysis applica-
tions and it is mainly used in econometric studies.

3.2. Non parametric methods

Applied to the measured vibration signals non-parametric
analysis methods included their analysis in the frequency
domain as well as in the field of time and frequency do-
main. Frequency analysis of test signals was performed as
the first and their spectral power densities (PSD) were calcu-
lated. Then using the short-time Fourier transform (STFT) the
time-frequency analysis has been carried out. Power spectral
density (PSD) is a popular tool in the theory of signal analysis.
It determinates how the energy of examined signal distribute
in his band. Mathematical write of the power spectral density
is the Fourier transform of the autocorrelation function of the
test signal and is given by the formula:

Sxx( f ) = 2

+∞∫

−∞
rxx (τ) e− j2π f τdτ (4)

where:
rxx (τ) = E [x (t) x(t − τ)]

rxx(τ) – the autocorrelation function of the signal x(t).
As compared with power spectral density PSD, which al-

low analysis signal of frequency domain only, the short-time
Fourier transform STFT (commonly used in analysis of
non-stationary signals), allows three-dimensional representa-
tion of the signal (its amplitude) in time and frequency do-
main. In analysis of non-stationary signals, STFT is expressed
as [6]:

X (t, f ) =

+∞∫

−∞
x(t) · w (t − τ)e− j2π f τdτ (5)

where:
x(t) – tested time signal of physical quantity,
w (t − τ)− time window of constant width τ.
In this analysis, frequency analysis of successive frag-

ments of measured signal x(t) is executed by multiplication it
with window function w (t − τ) of constant width. Next frag-
ments tested independently, combining spectrum components
with time.

4. Laboratory tests

Laboratory tests of the developed reclaimer prototype in-
cluded among other things, the vibration measurements made
on its corps in three given directions (Fig. 3). Registered wave-
forms of vibration have been analyzed numerically. The main
purpose of the analysis was to determine the amplitude of
movement corps of the reclaimer, in each of the established
measurement directions. In addition to the carried out analysis
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the basic parameters of the elemental sand mass motion trajec-
tory in the reclaimer guides were calculated (the results of this
part of the research were published in [4]). The experiment
was carried out for the three assigned positions of unbalanced
masses mounted on two electrovibrators which represented the
reclaimer drive. The value of supply voltage frequency of the
electrovibrators motors has been changing from 40 to 60 Hz.
This resulted in a change of their shafts speed. During the tests
a variable load of used sand on reclaimer corps was applied
(ranging from a lack of load to the load of its construction of
100 and 300 kilograms of mass sand). Due to the large number
of the obtained results from the laboratory tests the authors
decided the later part of the article, concern only to analysis
of the waveforms obtained for one measurement direction (X
direction only).

Fig. 3. The view of measurement transducers location on reclaimer
corps

5. Analysis of measurement signals

At the beginning of the analysis the probability density
functions p(x) of the measured signals were calculated. Ob-
tained waveforms of density distribution (Fig. 4) indicate that
the measured signals can be assigned to a group of harmonic
signals with additive noise. The waveforms also provide the
information about noise content in a useful signals. In mea-
sured signals the maximum noise value occurs at the direction
Z.

Fig. 4. Examples of the probability density distributions p(x) runs
obtained from vibration signals measured in X, Y and Z direction

The next step in the analysis was to verify the stationar-
ity of registered time series by examining the autocorrelation
function run for each of them (Fig. 5).

Fig. 5. The run of the autocorrelation function of vibration signal in
the X direction obtained for electrovibrators supply voltage frequency
f = 40 Hz

Because each of the measured time series are stationary
(Fig. 5) and ergodic [5] thus assumed their parametric models
ARMA and AR are stable. Before the identification of charac-
teristic parameters of AR model polynomial, the order of the
polynomial was specified so as to reached the assumed value
of matching error between polynomial and time series. Min-
imizing the final prediction error criterion (loss function V )
[8] optimal order for autoregression AR model was estimated
for na =10. At that order the maximum value of the match-
ing error model was δ 6 0.0021. Graphical representation of
changes in the value of the loss function V (matching error δ)
with the increase in the order of polynomial model is shown
in Figure 6.

Fig. 6. The loss function V changing with the increase of autoregres-
sive model AR order

As in the case described above (presented in the selec-
tion of AR model order estimation), before the identification
of the characteristic polynomials of the autoregressive with
the moving average ARMA model, the orders of characteristic
polynomials were estimated. Gradually increasing the order of
characteristic polynomial it was observed the reduction in loss
function V (matching error δ) to the assumed minimum value
after which the matching error has not significantly reduced
with further increases in the order of the equation. Based on
the established matching error δ (δ 6 0.0021) the order of
a polynomial A(q−1) was set. Established accuracy of the fit
was achieved for row na = 4. Minimizing the mean-square
error, the parameters (a1, ...,a10) of autoregressive AR model
and the characteristic parameters of the polynomials (A(q−1))
and (C(q−1)) of the ARMAX model were estimated. Evaluated
parameters of the AR and ARMAX models with final value
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of matching errors (models to time series) were put in Tables
1 and 2.

TABLE 1
Autoregressive AR model parameters for time series measured in X

direction and set electrovibrators supply voltage frequency

40
H

z

a0 a1 a2 a3 a4 a5 a6

1 - 0.9741 0.03945 - 0.02822 - 0.04752 - 0.3073 0.2265

a7 a8 a9 a10
δ = 0.002

-0.07372 0.05173 -0.03382 0.1476

50
H

z

a0 a1 a2 a3 a4 a5 a6

1 - 1.049 0.5238 - 0.158 - 0.1381 - 0.03124 0.0622

a7 a8 a9 a10
δ = 0.0021

- 0.1234 0.08106 - 0.255 0.08923

60
H

z

a0 a1 a2 a3 a4 a5 a6

1 - 1.183 0.4869 - 0.0887 - 0.1717 - 0.03555 0.06812

a7 a8 a9 a10
δ = 0.00191

- 0.05215 0.05482 - 0.2713 0.194

TABLE 2
Autoregressive with moving average ARMAX model parameters for
time series measured in X direction and set electrovibrators supply

voltage frequency

40
H

z

a0 a1 a2 a3 a4

1 - 2.84 3.094 - 1.669 0.4146

c0 c1 c2 c3
δ = 0.0019

1 - 2.004 - 2.004 - 0.3378

50
H

a0 a1 a2 a3 a4

1 - 1.62 1.241 - 0.7454 0.1253

c0 c1 c2 c3
δ = 0.0021

1 - 0.5548 0.1269 - 0.1763

60
H

z

a0 a1 a2 a3 a4

1 - 1.872 1.716 - 1.141 0.2979

c0 c1 c2 c3
δ = 0.0021

1 - 0.694 0.4238 - 0.2501

Applying the test of the white-hot forecast errors (residua
error test) consistency of the estimated parameters of AR and
ARMA models were checked.

Application of non-parametric methods for the analysis
of the measured signals included determination of their power
spectral densities PSD and the representation of the short time
Fourier transforms STFT. Function of constant Hemming’s
window of time range τ = 25 ms, which were shifted super-
imposing consequent windows with 75% solidity, was used for
time-frequency distributions. Obtained frequency representa-
tions PSD and time-frequency representations STFT for vibra-
tion runs measured in X direction are gathered in diagrams
shown below separately, for each supply voltage frequency of
elecrovibrators.

Fig. 7. Power spectral density PSD runs of vibration signals measured
along the X axis for electrovibrators supply voltage frequency 40, 50
and 60 Hz

Analysis of time-frequency representations prepared in
form of bit maps (Fig. 8) can be based on both quantita-
tive and qualitative analysis. Qualitative assessment is reduced
to verbal description of examined representations. In case of
used quantitative measure another option is observed, which
as a rule determines numerical measure of chosen parame-
ter. Quantitative assessment of the influence of supply voltage
frequency changes on vibration level was made in order to
facilitate the analysis of obtained time-frequency STFT repre-
sentations. The root mean square was taken as a measure of
changes of spectrum amplitude factors of the STFT, calculated
from whole signal time range t, with targeted frequency fi:

rmsX
(
t, f i

)
=

-
∑N

j=0 X(t j, f i)
2N(6)where:

X(t j, f i)− spectrum amplitude factor of the STFT,
N – length of time course corresponding to one second

of vibration measurement.

Fig. 8. Time-frequency representation STFT of signals measured along the X axis for electrovibrators supply voltage frequency:
a) 40Hz, b) 50Hz, c) 60 Hz
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Fig. 9. The root mean square of the amplitude spectra factors of the
STFT for different supply voltage frequency

6. Summary and conclusions

Presented in this article selected numerical methods of
vibration signals analysis allow use of their results in the lat-
er operating of the reclaimer. Obtained parametric models of
the vibration signals can be used (in order to rise efficiency
of used sand regeneration process) to maintain (control) the
desired nature of vibrations on the reclaimer corps as well as
for monitoring and diagnosis of its operational state. At this
time, it should be noted that autoregressive AR models of the
time series due to its high rows may not be used in the process
control. The high rows of the AR models usually bring time
delays in process control. For this purpose models of the lower
orders should be used e.g. autoregressive with moving average
ARMA models. Non-parametric models which were received

from the analysis of vibration signals provide information
about reclaimer operation using as a gauge of this information
frequency (PSD) and time-frequency (STFT) qualitative data
distributions. Application of quantitative assessment of time
– frequency distributions (the root mean square values of the
STFT coefficients) helps them interpret and may be useful for
tracking the wear of the main elements of the reclaimer. As-
suming for selected items (e.g. those the most heavily loaded)
limited values of their wear, it is possible to develop (based
on the rmsX = F(f) curves runs) routine repair plans of the
reclaimer and to predict the earlier exchange of its most wear
parts so as to minimize economical losses due to unplanned
stoppages of the device.

REFERENCES

[1] R. D a ń k o, Metalurgija 50, 93-96 (2011).
[2] R. D a ń k o, Int J Cast Metal Res 23, 92-96 (2010).
[3] R. D a ń k o, M. H o l t z e r, Arch Metall Mater. 55(3),

787-794 (2010).
[4] R. D a ń k o, J. S t o j e k, J. K u ź m i n, Archives of Foundry

Engineering 12, 27-32 (2012).
[5] K. M a ń c z a k, Z. N a h o r s k i, Komputerowa identyfikacja

obiektów dynamicznych. PWN, Warszawa (1983).
[6] R.G. L y o n s, Wprowadzenie do cyfrowego przetwarzania

sygnałów. WKŁ, Warszawa (2006).
[7] P. W e l c h, IEE Transactions on audio and electroacustics,

June (1967).
[8] T. Z i e l i ń s k i, Od teorii do cyfrowego przetwarzania syg-

nałów. WKiŁ, Warszawa (2009).

This article was first presented at the VI International Conference ”DEVELOPMENT TRENDS IN MECHANIZATION
OF FOUNDRY PROCESSES”, Inwałd, 5-7.09.2013

Received: 20 January 2013.


