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PROBLEM OF LATTICE ROTATION DUE TO PLASTIC DEFORMATION. EXAMPLE OF ROLLING OF F.C.C MATERIALS

PROBLEM OBROTU SIECI KRYSTALICZNEJ PODCZAS ODKSZTAŁCENIA PLASTYCZNEGO. PRZYKŁAD WALCOWANIA
MATERIAŁÓW O SIECI REGULARNEJ PŁASKO CENTROWANEJ

Rotations of grain crystal lattice are responsible for texture formation during plastic deformation. The classical definition
of lattice rotation leads in some cases to different texture predictions than the definition based on the orientation preservation
of selected sample directions and/or planes. For example, if classical <110>{111} slip is taken into account for f.c.c. materials,
the former approach enables to predict both copper and brass types of rolling texture, while classical approach predicts only the
first one. The analysis of rolling process was done for two types of lattice rotation and in function of grain-matrix interaction
parameter used in a deformation model. Correlation factors estimating the similarity of predicted and experimental textures as
well as the shares of ideal orientations are discussed.
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Obroty sieci krystalograficznej ziaren są odpowiedzialne za powstania tekstury podczas odkształcenia plastycznego. Kla-
syczna definicja obrotu sieci prowadzi w pewnych przypadkach do innych przewidywań tekstury niż definicja oparta na warunku
zachowania wybranych kierunków lub płaszczyzn próbki. Na przykład biorąc pod uwagę systemy poślizgu <110>{111}, użycie
tej drugiej pozwala przewidzieć zarówno teksturę typu miedzi jak i mosiądzu, podczas gdy definicja klasyczna umożliwia
przewidywanie jedynie tekstury typu miedzi. Dokonano analizy odkształcenia przez walcowanie dla obu definicji obrotu
uwzględniając równocześnie wpływ parametru oddziaływania ziarna z otaczającym materiałem. W celu porównania przewi-
dzianych i zmierzonych tekstur wyliczono i przedyskutowano współczynniki korelacji oraz udziały orientacji idealnych.

1. Introduction

Modelling of polycrystalline plastic deformation is
an important field of the material science. It enables
to study deformation mechanisms, microstructure mod-
ification and orientation distributions. A comparison of
predicted and experimental deformation texture is one
of the most important tests confirming, whether a model
is correctly constructed. Texture predictions allow also
to plan optimal deformation processes in order to obtain
required material properties.

Obviously, predicted textures depend on the applied
definition of lattice rotation. In many works the classical
(CL) definition is used and it is based on the assumption
that a rigid body rotation of each grain and of the sample
are the same, at least statistically (in rolling deformation

they are equal to zero) [1-4]). Consequently, the lattice
rotation is calculated in order to fulfil this condition.

The other approach is based on the assumption that
selected sample and grain planes and/or directions pre-
serve constant orientation with respect to the laboratory
reference frame (the latter is defined by the deformation
geometry). This approach, named by the present authors
preservation (PR) condition, was successfully used in
modelling of plane strain or axially symmetric deforma-
tion (e.g., [5-8]). In general, a characteristic microstruc-
ture produced during deformation (e.g., elongation and
flattening of grains during rolling) explains a use of PR
definition [2]. It should be mentioned that also other
lattice rotation definitions are used in different versions
of the self consistent model (e.g., [9-13]).

For clarity, we compare only CL and PR lattice ro-
tation definitions in this work. They can be implemented
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in any elasto-plastic deformation model. We use a de-
formation model [4], which is shortly characterized in
the next Section. Besides the lattice rotation also the in-
tensity of grain-matrix interaction has a strong influence
on the predicted results (e.g., crystallographic textures).
Hence, this factor will be also taken into account in con-
siderations.

2. Deformation model used in calculations

Lets us shortly review basic variables used in ap-
plied deformation model.

2.1. Grain-matrix interactions

The main question, which has to be answered in
any deformation model, is: what is a relation between
macroscopic variables of the sample (stress Σi j and de-
formation Ei j) and analogous ones (σi j, εi j) appearing
on grain level – Fig. 1. Unfortunately, it is not possible
to solve this problem in a general case. It is the reason
why we use models.

Fig. 1. Macroscopic load Σi j is applied to a material, while a local
stress σi j appears on a grain level. The sample deformation is Ei j

and a grain deformation is εi j

It was shown by Hill [14] that a general relation
between local and global variables can be written in the
form:

σ̇ij = Σ̇ij + Lijkl(Ėkl − ε̇kl) (1)

where σ̇i j , ε̇i j are local stress and strain rates, Σ̇i j, Ėi j
their global equivalents, Li jkl is the interaction tensor
and the convention of summation on the repeated index
is applied (it is used in all formula in this paper).

A strict calculation of Li jkl tensor is impossible in a
general case; hence some assumptions have to be used
leading to various, more or less accurate, models. A
considerable progress was employing the self consistent
method to such problems [9-13]. Nevertheless, in many
cases the assumption of isotropic matrix-grain interac-
tion leads to surprisingly good predictions of material
properties. In such the case Li jkl tensor can be replaced
by a scalar parameter. Moreover, in the cases of practi-
cal importance, it can be assumed that the plastic strain

rate term (Ėp
ij − ε̇pij) is much larger than the elastic one

(Ėe
ij − ε̇eij). Accordingly, and under additive strain rate

decomposition approximation, Eq. 1 can be simplified
to the following form [3,4]:

σ̇ij = Σ̇ij + αG (Ėp
ij − ε̇pij) (2)

where G is the shear modulus of the material and α is
so called elasto-plastic accommodation parameter. Eq. 2
states that the rate of local stress σij is a superposition
of the rate of applied external stress Σij and the rate of
interaction term:α G (Ep

ij − εpij). The latter term can be
called reaction stress and is responsible for a deformed
grain shape: it tends to minimize the difference between
a grain shape and the sample shape (analogous, but sim-
pler relation was used in original Leffers model [6]).
Some of known models can be deduced from Eq. 2 if
α takes appropriate values. For example, α=0 leads to
the Sachs model [15] (σi j = Σi j). Taking α → ∞ one
approaches the Taylor model [16] (εp

i j = Ep
i j). On the

other hand, α=1 leads to Kröner scheme [17], in which a
purely elastic interaction between a grain and the matrix
is assumed. However, it was shown, that a magnitude
of interaction in polycrystalline metals is much weaker
than a purely elastic one [3]. Hence, the realistic values
of α, taken into account in our calculations, are between
0.001 and 0.1.

2.2. Description of deformation by slip

An exhaustive review of deformation mechanisms in
polycrystalline materials can be found in the monograph
[18]. Slip and twinning are two basic crystallographic
mechanisms of plastic deformation. Twinning can appear
in h.c.p. and in some f.c.c. metals, especially if they are
deformed with high strain rates or at low temperatures.
However, in f.c.c. metals deformed at room temperature,
crystallographic slip is the dominating mechanism. Con-
sequently, only slip is taken into account in the present
calculations.

During slip two parts of a crystal are irreversibly
sheared one with respect to other by a multiple of inter-
atomic distance (Fig. 2). The shearing movement occurs
on a crystallographic slip plane (hkl) (characterized by
n normal unit vector) and along a slip direction vec-
tor [uvw] (characterized by m unit vector). Consequent-
ly one defines [uvw](hkl) slip system, which also can
be shortly denoted as (m, n). The crystallographic slip
mechanism is schematically presented in Fig. 3b, where
also the slip shear strain γ is defined. By activation of
at least five independent slip systems one can produce
any imposed plastic strain.
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Fig. 2. Deformation by crystallographic slip a) crystal before slip,
b) blocs of crystal are sheared on the slip plane (n) along the slip
direction (m)

It is useful to introduce the reference frame connect-
ed with the slip system: xg

1
=m and xg

3
= n (Fig. 3a).

The resolved shear stress, decisive for a slip system ac-
tivation, is easily expressed in this coordinates system:
τ = σ

g
13. In a similar way, the glide shear dγ of a single

slip produces only one non-zero component of the plastic
displacement gradient: dγ = dep (g)

13 .
The condition for slip occurrence is:

τ = τcr (3)

i.e., the resolved shear stress (τ = σ
g
13) has to reach the

critical valueτcr (Schmid law).
If Cauchy stress definition is used, the resolved shear

stress τ = σ
g
13 on the slip system (m, n) is expressed as:

τ = σ
g
13 = min jσi j (4)

where σi j (grain stress), m and n vectors are expressed
in the laboratory reference frame {L}. In the case of
rolling, the {L} frame is defined as follows: x1 is parallel
to rolling direction, x2 – to transverse direction and x3
– to normal direction.

Slip systems are hardened during deformation,
which is visible in the stress-strain curve. The physi-
cal reason of hardening is mutual interaction of disloca-
tions, which are intensively multiplied during deforma-
tion. Dislocations are necessary for a progress of plastic
strain, but being in a huge amount they also block each
other. This increases the critical shear stress for slip.
Generally, a multi-slip is developed; hence a hardening
of the slip system (”i”) depends on shear glides on other
active slip systems (” j”):

dτi
cr = H i jdγ j (5)

where Hi j is the strain hardening matrix. Both theoretical
and experimental studies show that in the first approxi-
mation this matrix contains two types of terms: strong
(h2) and weak ones (h1) [19]. However, in the present
calculations we used the isotropic hardening matrix, i.e.,
h1=h2.

2.3. Grain and sample deformation

Let us consider a typical increment of external load.
First, let us express the strain, resulting from a glide on
one slip system with a very small shear amplitude δγ. In
the slip system reference frame (g) the plastic displace-
ment gradient tensor has only one non-zero component:
δep(g)

13 = δγ. This tensor after transformation to the lab-
oratory reference frame {L} is:

δep
i j = min j δe

p(g)
13 = min jδγ (6)

The plastic strain increment, δεp
i j, is the symmetric part

of δep
i j:

δε
p
i j =

1
2
(min j + m jni) δγ (7)

Fig. 3. a) Reference frame (g) connected to a single slip system: xg
1 is defined by m vector and xg

3 – by n vector, b) definition of the glide
shear γ on a single slip system
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After each elementary slip event, all basic quanti-
ties are recalculated (crystal orientation, reaction stress,
sample deformation). A total plastic strain increment of
grain “I ′′, developed during the considered external load
increment, is the sum of consecutive glides on the most
loaded slip systems (s), each with a fixed and small shear
magnitude (δγs = δγ in our case):

∆ε
p(I)
i j =

∑

s

[
1
2
(ms

in
s
j + ms

jn
s
i ) δγ

s
]

(8)

The number of elementary slip events depends on the lo-
cal stress according to Eq. 2. The corresponding overall
plastic strain increment is the average of grain strains:

∆Ep
i j =< ∆ε

p(I)
i j >=

1
V0

∆ε
p(I)
i j V I (9)

where VI and V0 are the volumes of the I-th grain and
the sample, respectively.

3. Crystal lattice rotation

Let us consider for simplicity a crystallite in a form
of the square plate ABCD (we deal with a quasi 2-D
situation), with its edges parallel to the axes of the lab-
oratory coordinates frame {L}, see Fig. 4. The grain is
then deformed by a homogenous shear δγ on the slip
system (n, m) into configuration A’B’C’D’. The resul-
tant grain shape after one slip event, shown in Fig. 4b,
is characterized by the plastic strain (Eq. 7) and by the
rigid body rotation (plastic rotation):

δω
p
i j =

1
2
(δep

i j − δ ep
i j) =

1
2
(min j − m jni) δγ (10)

If there was no interaction between a grain and its
surrounding – the crystal lattice orientation would not
change even for not zero δω

p
i j (Fig. 4 a,b). However,

some constraints are always imposed on the deformed
grain by a neighbouring material and by a deformation
device. As a consequence the crystal lattice will rotate
from its initial position.

Let us consider such a deformation process, that the
total sample rotation is zero (δΩi j = 0); this is, e.g.,
the case of rolling or of tensile test. Next, let us do the
approximation, that the total rotations of a grain and of
the sample are the same, i.e.: δωi j = δΩi j = 0. To
fulfil this condition, a compensating rotation of a grain
δωlatt(CL)

i j (classical lattice rotation – CL) has to be added
the plastic rotation:

δωi j = δω
p
i j + δωlatt(CL)

i j = 0 (11)

Finally, from Eqs. 10 and 11 we obtain:

δωlatt(CL)
i j = −δωp

i j = −1
2
(min j − m jni) δγ (12)

The above equation gives the definition of classical
lattice rotation (CL).

In our example from Fig. 4 the lattice rotation com-
ponent δωlatt(CL)

31 = − 1
2 (m3n1 − m1n3)δγ is imposed and

it leads to the final position of the grain shown in Fig. 4c.
It is visible, that the lattice orientation changed after this
rotation.

However, it was found by some authors (e.g., [1,2],
[5-8], [20]) that another approach to lattice rotation can
be considered. In this approach the lattice rotation re-
sults from constraints limiting possible reorientations of
specified sample directions and/or planes with respect to
the laboratory reference frame {L}. Consequently, some
restrictions are imposed on selected shear components
kl (where k,l ) of the displacement gradient tensor, ex-
pressed in {L}, for the sample (δG)

kl and for a grain (δekl).
If the grain shapes follow statistically that of the sample,
one can assume (in the first approximation) that these se-
lected components (kl) are the same for the sample and
for a grain: δGkl = δekl [20]. For very strong constraints
(e.g., case of rolling), the orientations of specified sam-
ple directions/planes are constant in {L} reference frame,
hence: δGkl = δekl = 0. Consequently, an auxiliary ro-
tation (lattice rotation), has to be imposed on a grain in
order to fulfil this condition:

δekl = δep
kl + δωlatt(PR)

kl = 0 (13)

Or, substituting Eq.6:

δωlatt(PR)
kl = −δep

kl = −mknl δγ (14)

The above equation describes the preservation condition
(PR) definition.

Let us return to our example from Fig. 4 and let
us assume that the orientation of a string of materi-
al parallel to x1 axis has to be constant. Consequently,
δωlatt(PC)

31 = −m3n1 δγ rotation component has to be im-
posed. It changes the lattice rotation. The grain position
after occurrence of this rotation is shown in Fig. 4d. It
is visible that CL and PR lattice rotations are different
(compare Figs. 4c and 4d).

Finally, let us calculate (following example from
[2]) the difference between CL and PR lattice rotations
(defined by Eqs. 12 and 13). For example: ∆δωlatt

31 =

δωlatt(CL)
31 − δωlatt(PR)

31 = − 1
2 (m3n1 − m1n3) δγ +

+ m3n1δγ = 1
2 (m3n1 + m1n3) δγ = δε31

This result is directly seen in Figs 4 c and d.
Analogous relations are fulfilled for other compo-

nents:

∆δωlatt
21 = δε21, ∆δωlatt

31 = δε31, ∆δωlatt
32 = δε32

(15)
It is clear that in the case where δε32 = δε32 = δε32 = 0,
both definitions lead to the same lattice rotations.
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Fig. 4. a) Shear deformation of an initial grain in a form of square plate ABCD (with edges parallel to the laboratory reference frame {L});
the shear occurred on the slip system (n, m), b) shape and position of the grain (A’B’C’D’) after slip only, c) position of the grain after slip
and CL lattice rotation, d) position of the grain after slip and PR lattice rotation (with the condition of constant orientation of a string of
material parallel to x1 direction)

Fig. 5. Geometry of deformation by rolling. Grains shapes before (a) and after rolling (b)

4. PR definition of lattice rotation for rolling
geometry

Let us consider the geometry of deformation by
rolling (Fig. 5). The laboratory reference frame {L} is
defined by x1 axis parallel to the rolling direction and
x3 axis parallel to the normal direction. During rolling
process, grains being initially equiaxial, become flat-
tened and elongated in the rolling direction, similarly
like the rolled sample (Fig.5 a,b). Hence, a string of
material being initially parallel to the rolling direction
(x1) – preserves its orientation in the laboratory refer-

ence frame (at least statistically). Similarly, a platelet
of material being initially parallel to the rolling plane
(x1x2) – preserves its orientation. Consequently, δe31,
δe21 and δe32 components of the displacement gradient
tensor have to be compensated by the opposite lattice
rotation:

δωlatt(PR)
21 = −δe21 = −m2n1δγ

δωlatt(PR)
31 = −δe31 = −m3n1δγ

δωlatt(PR)
32 = −δe32 = −m3n2δγ

(16)

and obviously: δωlatt(PR)
i j = − δωlatt(PR)

ji .
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5. F.c.c. rolling textures predicted with CL and PR
lattice rotation definitions

It is known that deformation models differ by the in-
tensity of grain-matrix interaction. In the present mod-
el the interaction level is characterized by α parame-
ter. Our calculations and comparison with experimental
data confirm that one should consider α values from
the [0.001, 0.1] range. A very strong interaction model
(tending towards Taylor model) is already obtained for
α of the order of one and a weak interaction one (tend-
ing towards Sachs model) - for α close to zero. These
are two limiting values. To have a complete set of data,
we performed calculations for α values from the range
[0.0001, 1], for two definitions of lattice rotation, i.e., for
CL and PR ones. The predicted orientation distribution
functions (ODF) are compared with experimental data
in Fig. 6 (for CL) and in Fig. 7 (for PR), while their
quantitative analysis are presented in Figs. 8 and 9.

To discuss the predicted textures, four ideal orien-
tations of f.c.c. rolling textures are marked in Figs. 6
and 7:
• copper component C: (ϕ1 = 90◦, φ = 35◦, ϕ2 = 45◦),
• brass component B: (ϕ1 = 35◦, φ = 45◦, ϕ2 = 0◦),
• S component: (ϕ1 = 59◦, φ = 37◦, ϕ2 = 63◦),
• Goss component G: (ϕ1 = 0◦, φ = 45◦, ϕ2 = 0◦).

(Euler angles characterizing crystal orientations are
defined according to Bunge convention [21]). It is well
known that two characteristic f.c.c. rolling textures are
distinguished, namely the brass and the copper type tex-
tures. The problem is to explain the appearance of the
brass type texture. There were many attempts to elu-
cidate the transition between these two type textures.
Consequently, some additional mechanisms like twining,
cross-slip, slip on non-octahedral systems, slip by partial
dislocations and shear band formation were considered
[22,23]. However, in many cases the mentioned mech-
anisms do not appear with sufficient intensity, hence a
simpler explanation of this texture transition can be ex-
pected.

In this paper, the <110>{111} slip is considered
as the unique deformation mechanism of f.c.c. metals.
Hence, a type of lattice rotation (CL or PR) and the in-
tensity of grain-matrix interaction (α) are the two main
variables, which decide on a character of predicted tex-
tures. The other model parameters used in computer sim-
ulations are listed in Table 1.

The predicted ODFs for α=0.001, 0.01, 0.02, 0.1 and
for CL and PR definitions, as well as the experimental
rolling textures of α-brass and copper, are shown in Figs.
6 and 7. In order to estimate the agreement of predicted
and experimental textures, the linear regression was used

and correlation factors R were calculated. The applica-
tion of this method to texture comparison was described
in details in [24]. Values of R vary in the range [0, 1]:
two functions have identical shape if R=1 and are totally
different if R=0. Also, the shares of selected ideal orien-
tations in computer predicted textures were determined.
For a given ideal orientation gA, its share is calculated as
a proportion of these model crystallites (all of the same
volume) for which their crystal orientations gi are distant
from gA less than 12 deg (i.e.: ω( gi, gA) 6120).

For each predicted ODF we calculated a correlation
factor estimating a degree of its similarity with experi-
mental ODFs of α-brass (RB) and of copper (RC). These
values are marked in Figs. 6 and 7. The variations of RC
and RB and of the shares of ideal orientations versus
α are shown in Figs. 8 and 9. The basic range of α
(between 0.001 and 0.1) is indicated as a grey zone in
these figures.

We note that RC is clearly higher than RB in the
whole range of α for CL definition (Fig. 8). We also
observe that the copper component (C) is strongly domi-
nant over the brass component (B) in this approach – Fig.
9. Hence, we conclude that in the frame of CL definition
only the copper texture can be predicted, independently
of α value.

Contrary to that, PR definition leads to a more com-
plex behaviour. For α < 0.01 we obtain a texture close to
the brass type one: RB is evidently higher than RC (also
B component is predominant over C one) – Figs. 8 and
9. However, for α > 0.01 the predicted texture becomes
closer to the copper type one with a clear predominance
of C orientation over B one (RC > RB).

Let us note that for a strong interaction level (α=0.1),
the predicted textures for CL and PR definitions are
practically identical and very close to the copper type
texture (compare Figs. 6-9 for α=0.1). This results from
the relation: δε32 = δε32 = δε32 = 0 (valid for a strong
interaction model), because accordingly to Eq. 15 CL
and PR rotations are the same.

Finally, we conclude that in order to predict a rolling
texture close to the experimental brass texture, one has
to use PR rotation definition and a weak interaction level
(α between 0.001 and 0.01). On the other hand, in the
frame of CL definition it is not possible to forecast the
brass type texture for any value of the interaction para-
meter α, if <110>{111} slip is considered as the unique
deformation mechanism.

The above differences in predicted textures can in-
fluent some physical properties, e.g., the residual stress
interpretations or material behaviour during recrystal-
lization [25-28].
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TABLE 1
Parameters used in the deformation model for polycrystalline copper

Number
of

grains

Slip
systems

Initial
value of
τcr

Hardening
matrix
terms

Slip shear
increment

Applied
stress

components

Final
rolling

reduction

Shear
modulus

N=5000 < 110 >{111} τ0
cr= 100 MPa h1 = h2 = 60 MPa ∆γ=0,05

Σ11 = −Σ33,
other equal to zero r = 50% G=46 GPa

Fig. 6. Comparison of predicted rolling textures obtained for CL lattice rotation definition (50% rolling reduction) with experimental copper
and α-brass textures. Results for α = 0.001, 0.01, 0.02 and 0.1 are shown
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Ideal orientations are marked: C – {112} < 1̄1̄1 >, B – {011} < 21̄1 >, S – {213} < 3̄6̄4 > and G – {011} < 100 >

Fig. 7. Comparison of predicted rolling textures obtained for PR lattice rotation definition (50% rolling reduction) with experimental copper
and α-brass textures. Results for α = 0.001, 0.01, 0.02 and 0.1 are shown

Ideal orientations are marked: C – {112} < 1̄1̄1 >, B – {011} < 21̄1 >, S – {213} < 3̄6̄4 > and G – {011} < 100 >
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Fig. 8. Correlation factors RB and RC versus elasto-plastic accommodation parameter α. Results for CL and PR approaches are shown. Range
of α ∈[0.001, 0.1] is marked as grey zone

Fig. 9. Shares of four ideal orientations in predicted textures versus elasto-plastic accommodation parameter α. Results for CL and PR
approaches are shown. Range of α ∈[0.001, 0.1] is marked as grey zone

6. Conclusions

The presented calculations show that CL and PR
definitions of lattice rotation lead in general to differ-
ent rolling textures. The second important parameter is
the elasto-plastic accommodation parameter α which de-
scribes the intensity of grain-matrix interaction.

The main conclusion is that for CL, independently
of α value, it is not possible to predict the brass type
texture, if the <110>{111} slip is the unique deformation
mechanism; only the copper type texture can be obtained
in this approach.

On the other hand, PR definition enables to predict
both types of f.c.c rolling texture. For a weak interac-
tion intensity (α between 0.001 and 0.01), one obtains

the brass type texture, while for higher α values – the
copper type texture. A continuous transition between two
types of f.c.c rolling textures is observed in function of
α parameter.

The above results confirm the importance of lattice
rotation definition in deformation models. It has to be
carefully chosen for a given geometry of deformation.
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