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AN EFFECT OF THE YIELD CRITERION ON THE POSITION OF THE
BI-MATERIAL INTERFACE IN PLANAR FLOW OF THREE-LAYER MATERIAL
THROUGH A WEDGE-SHAPE CHANNEL

WPLYW KRYTERIUM UPLASTYCZNIENIA NA POLOZENIE GRANICY
ROZDZIALU FAZ BIMATERIALU TROJWARSTWOWEGO W PELASKIM
PLYNIECIU PRZEZ MATRYCE, KLINOWA

The main objective of the paper is to show that the yield criteria chosen can have
a significant effect on engineering applications of plane-strain rigid/plastic solutions for
piece-wise homogeneous materials. The starting point of the concept is that experimental
data are usually available for the tensile yield stress whereas the mathematical formulation
requires the shear yield stress. Due to this fact, the interpretation of solutions for engineering
applications depends on the yield criterion chosen for each material of multi- material
composition. The paper deals with the problem of planar flow of three-layer material through
a convergent wedge-shaped channel. Results of this research may be applied in the modeling
of plastic deformation processes such as extrusion and drawing, to improve the accuracy
of theoretical prediction of simultaneous plastic flow of materials with different mechanical
properties.

Keywords: yield criterion, bi-material interface, planar flow, three-layer material, wed-
ge-shape channel

W pracy pokazano, ze wybor kryterium uplastycznienia w modelu ciata sztywno ide-
alnie plastycznego, czg¢sto uzywanym w zastosowaniach inzynierskich, moze mie¢ bardzo
istotny wplyw na wynik koricowy modelowania jesli chodzi o materialy zlozone. Z ba-
daf eksperymentalnych zwykle znane jest naprgzenie uplastyczniajace wyznaczone w te-
$cie na rozciaganie podczas gdy w modelowaniu matematycznym niezbgdna jest wiedza
o naprezeniu uplastyczniajgcym w $cinaniu, ktére si¢ okresla jednoznacznie z wyborem
kryterium uplastycznienia (np. Treski czy Hubera-Misesa). Jesli w przypadku proceséw z
monomaterialami wybdr taki ma zwykle niewielki wptyw na modelowanie, to dla materialéw
zlozonych sprawa juz nie jest tak oczywista. W pracy przeanalizowano plaskie ptyniecie ma-
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terialu kompozytowego skiadajacego sig z trzech warstw plastycznych w matrycy klinowej.
Pokazano, ze granica podzialu pomigdzy materialami a nawet samo istnienie rozwigzania
moze istotnie zaleze¢ od wyboru kryterium uplastycznienia. Zbadane zostato kryterium w
najbardziej ogéinej postaci (wspomniane klasyczne kryteria uplastycznienia sg przypadkami
szczegblowymi). Wynik analizy moga byé stosowane do oceny doktadnosci modelowania in-
zynierskiego proceséw wyciskania czy ciagnienia materialéw kompozytowych opierajacych
si¢ na poszczegdlnych kryteriach uplastycznienia stosowanych skladnikéw kompozytu.

1. Introduction

The position of bi-material interface in composite material essentially depends on
its properties and conditions of plastic deformation are very important from the point
of view of engineering practice.

Extrusion of bi-metallic longitudinally oriented composite is a more complicated
process in comparison with mono-material flow in the same process. As it has been
shown in [13] the position of the bi-material interface in the process depends on
many factors. Moreover, even in the case of the simplest modeling of axisymmetric
extrusion (radial flow field) the following additional problems should be considered:
1) the shape of the dead zone (in the sleeve mainly) and 2) the position and shape
of the bi-material interface whose form depends on process parameters (Fig. 1). An
additional problem in the modeling is connected with the fact that the friction regime
at the bimaterial interface is unknown a priory. Both the regimes (sticking or sliding)
may occur depending on process parameters (see Fig. 2 from [13])).

In the modelling of the aforementioned processes, the assumption of the yield
criterion (e.g. Tresca or Huber- Mises) is very important because of the possible vari-
ation of interface position [2, 3]. Up to now there are no adequate rules to choose the
criterion for different materials and under various conditions of plastic flow. For real
process and its modelling it is very important to know the consequence of the choice
of material description and yield criterion which has a great effect on the prediction
of the position of the material interface.

Soft core / Hard slecve Hard core / Soft slecve

Fig. 1. Changing in the shape and position of bimaterial interface in plastic zone of Al/Pb composite
(after extrusion of the bullet)
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Fig. 2. Extrusion of bimetallic composite of sleeve-core system

The simplest analytical modeling has been done in papers [7, 8] under the simpli-
fied assumptions: both the materials are perfectly plastic, the flow is radial within the
each material.

Flow in converging channels is a classical problem of solid and fluid mechanics.
A solution for planar flow of rigid perfectly plastic material through a converging
wedge- shaped channel has been given in Hill {8]. Assuming different yield criteria,
the problem of axisymmetric flow of rigid/perfectly plastic material through a conical
channel has been studied by Sokolovskii [14], Shield {12] and Alexandrov and Barlat
[1]. Browman [4] has included rotation in the solution obtained by Sokolovskii. Planar
and axisymmetric flows of rigid plastic, linear hardening materials have been studied
by Durban and Budianski {6] and Durban [5], respectively. Malinin [10] has considered
planar and axisymmetric flows of viscous materials. All of the aforementioned solutions
have dealt with homogeneous materials. However, piece- wise homogeneous materials
are widely used in modern industry. A typical process for forming such materials is
extrusion (for example, Sliwa, [13]). Solutions for flow through converging dies can
serve as a basis for approximate analysis of the extrusion process. Several aspects of
the plane-strain theory of plasticity for piece-wise homogeneous materials have been
studied by Rychlewski [11). Solutions for planar and axisymmetric flows of multi-layer
materials through wedge-shaped and conical channel have been obtained in Durban [7],
Alexandrov et.al.. [3] and Alexandrov and Mishuris [2]. In these solutions, it has been
assumed that the materials obey the same yield criterion such that the only difference
in the constitutive behaviour is the magnitude of the yield stress in tension. In the
present paper, an effect of the choice of the yield criterion on solution behaviour for
planar flow of three-layer material through a wedge-shaped channel is investigated.
The analysis is based on the solution given in Alexandrov et.al.. [3]. In the case of
plane-strain problems for the rigid/perfectly plastic homogeneous materials, the solution
in dimensionless form is independent of the yield criterion. However, when piece-wise
homogeneous rigid plastic material deforms and yielding of each homogeneous part is
determined by the corresponding tensile yield stress, the solution behaviour depends on
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the choice of the yield criterion for each homogeneous part. Because of this, the shear
yield stress is involved in the mathematical formulation of the problem, and this yield
stress depends on both the tensile yield stresses given and the yield criteria assumed.

2. Statement of the Problem

For preliminary evaluation of an effect of the yield condition on the position
of the bi- material interface in extrusion and drawing, it is possible to approximate
that process by planar flow of free layer material in a wedge-shape channel. Such an
approach permits for a quick design of the process.

Consider a converging wedge-shaped channel (total angle 2a) through which a
three-layer strip is being forced (Fig. 3). The layers adjacent to the walls are made
of the same material. Thus the problem is symmetric with respect to the horizontal
axis passing through the apex of the channel. Introduce a polar coordinate system, r6,
with its origin coinciding with the apex. Because of symmetry, only the space 6 > 0
needs to be considered. Each material is rigid perfectly plastic. Sliding occurs at the
bi- material interface, 8 = 6;. The value of 8; is unknown and should be found from the
solution. Friction at the wall and the bi-material interface is described by the constant
friction law with the friction factors mg and m;, respectively.

materia) 2

Fig. 3. Notation for three-layer flow through converging wedge-shaped channel

The tensile yield stresses, 0'§,1) and 0';2), are supposed to be known from experiment.

Here and in what follows the superscripts (1) and (2) denote the material 1 and 2,
respectively, as shown in Fig. 3. The yield criterion for each material should be chosen
by specifying n in the generalized isotropic yield criterion proposed by Hosford (1972).
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In terms of the principal stresses, o, o and o3, the latter has the form

- n® - n® - n® 1/® :
(01 -0)" + (o2 203) +(01 - 03) =0, i=1,2, (1)

with some real value n > 1. In general, n") # n®. The shear yield stress is expressed
in the form .
-1i/n
y=oyp(27+1) . 2)
Using (2) the ratio of the shear yield stresses of the two materials involved in the
solution given in [3] can be written as
O
T=—75 = TeTas 3)
(2)
Ty
where -
o 1@ : 0.
Te=—, Tu== and D=+ =12 4)
ey P
Y
The value of 7, is supposed to be known and fixed whereas the value of 7, is uncertain
since in many cases the experimental output is limited to the tensile yield stress. The
main objective of this paper is to investigate an effect of the value of 7, on solution
behaviour. The value of n involved in (1) can vary in the interval

1<n<oo. 5)

The Tresca yield criterion is obtained at n = 1 and n = o, and the Huber-Mises yield
criterion at n = 2 and 4. In the interval (5), ¢ considered as the function of » attains its
maximum at n = 1 where ¢ = 2, and minimum at n =~ 2.767 where ¢ = 1.71. Therefore
T, may vary in the interval

1.71 2
- STa < 17T ©

3. Solution

The solution for arbitrary 7 is described in detail in [3]. Its structure depends on
T, mg and m;. Also it depends on the direction of sliding at the bi-material interface.
Here, with the use of (3), the final equations to be solved are summarized for most
important cases.
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3.1. The velocity of material 1 is higher than the velocity of material 2 at the
bi-material interface and 7,7 > 1

Using (3) the system of equations for ¢, 6y and 6; given in [3] takes the following

form
c /c +1
6; = —wgl) + T—— arctan[ —_'— tan !llgl)l ,
TaTeC TaTeC + 1
6= —yP+ — T arctan ,/ 2 tany®| + 6y, Q)
Tz.,zcz TaTeC— 1
TaTeC TaTeC + 1
a=-yP 4+ [1, i tamﬁ(z)]+00,
1212c2 TaTeC — 1

where :ﬁ(l) :ﬁ(z) and z//(z) are determined from
7,7, 502y =sin2y® =m;  and  sin2YP = my. ®)

Of three unknowns involved in (7), ¢ and 6 are auxiliary parameters and 6; is a
quantity of practical interest, the position of the bi-material interface (Fig. 3). Therefore,
in the next section the latter quantity is used to illustrate the main features of this and
following solutions.

3.2. The velocity of material 1 is higher than the velocity of material 2 at the
bi-material interface and 7,7 < 1

3.2.1. The case m;T,7. < my

The structure of the solution in this case depends on the value of T,7.c. If T,7.c > 1,
the solution reduces to equations (7). If 7,7.c = 1, ¢, 6y and 6; should be found from

& arctan \,ﬁ—ltam//(l)
Ve2 =1 c—1 9 i

1
0,' = _¢§2) - 5 cot lﬁl(z) + 90, (9)

1
O

1
a= —¢¢(12) - E cot I//g,z) + 6
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Finally, if 7,7.c < 1, the solution reduces to the system of equation in the following

form A
cos2 COS2¢ + T,T,
6= -y + L arctan |  |—=2 . TaTe o v,
/cos? 2¢ — 1272 | Y cos2p — 7,7,

@) a
2 sin(y;” —¢
g =-y@+ 2%y ( = ) + 6o, (10)
2 _sin(wi +<p)_
o3 (2) 1
29 . [sin{vs’ —¢
a=- t(zz)+cos ?In ( (:2) ) + 6y,
2 _sin( " +<p)~

where ¢ is defined by cos2¢ = c7,7,. It is possible to show that at given values of «,
mg, m;, T,, and 7, one and only one of the systems of equations (7), or (9) or (10) has
a solution.

3.2.2. The case m;T,T. > my
In this case, the solution, if it exists, reduces to the system of equations (10).

3.3. The velocity of material 2 is higher than the velocity of material 1 at the
bi-material interface

In this case the solution may exist if and only if c7,7, > 1. The system of equations
for ¢, 6y and 6; reduces to

. m
sin(¢ — ¢;
6=y 4 cos24. : (o-v;") ,
i 2 sin(¢ + ¢, (D)
2 +1
6= —p® 4 a2 cpan| |2t e
22 cos? ¢ — 1 TaTeCOS2¢ — 1
o= —y@ 4 TaTe COS2¢ arctan | . [TaTeSo828 + 1 tan @ | + 6,
T2r2cos? ¢ — 1 TaTeCOS2¢ — 1

where ¢ is defined by cos2¢ = c.
3.4. Qualitative and quantitative effects of the yield condition on the solution

3.4.1. The velocity of material 1 is higher than the velocity of material 2 at the
bi-material interface (Sections 3.1 and 3.2)

The case 1, = 1. In this case the experimental tensile yield stress is the same for
both materials. Therefore, if the same yield condition is assumed for the materials, the
unique solution corresponding to the flow of homogeneous material is obtained (except
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that there may be a velocity jump at the bi-material interface). However, materials may
obey different yield criteria even though the tensile yield stress is the same. The yield
condition assumed has a great effect on the solution. The solution to equations (7), (9)
and (10) has been found numerically in the interval (6). It is illustrated in Fig. 4. The
friction factors are m; = 0.5 and mg = 1.0.

The case T, = 0.1912. The ratio of the tensile yield stresses corresponding to a compo-
sition “Aluminum — Lead” is 0.1912 (Sliwa, [13]). In the case under consideration the
layer made of lead is between two layers made of aluminum. The solution to equations
(7), (9) and (10) has been found numerically in the interval (6). It is illustrated in the
same Fig. 4 for the same friction parameters.

The case T, = 5.23. In the this case, the same materials are considered but the layer
made of aluminum is between two layers made of lead. The solution to equations (7),
(9) and (10) has been found numerically in the interval (6). It is illustrated in Fig 4
for m; = 0.5 and mg = 1.0.

It is easy to observe (Fig. 4) that the influence of the yield criterion assumed on
the value of 6; is most significant for 7, = 1. In Fig. 5, the same results are presented
for §; normalized by its value obtained from the solution in which the same yield
criterion is assumed for both materials.

—e— T, =10
—a— T, =0.19
~%— T, =523

08 09 085 100 105 110 115

Ta

Fig. 4. Variation of angle 6; determining the position of the bi-material interface with 7,
(logarithmic scale) at different values of 7,

As one can conclude from these results, smaller influence appears when the exter-
nal material is stiffer then the inner one. It is important to find the range of parameter
7, where the highest sensitivity of the value of normalized 6; to the criterion chosen
occurs. To this end it is necessary to investigate the ratio 8;(7.7,)/6,(t.) where the value
6i(t.) = 6; corresponds to 7, = 1. Numerical results are illustrated in Fig. 6 where 7,
varies but 7, takes the end points of the interval (6).

The friction factors are m; = 0.5 and my = 1.0. Most significant deviations from
the case 7, = 1 occur in the interval 7, € (0.1,1.2), and for 7, = 0.7 the maximum
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Fig. S. Variation of normalized angle §; with 7,(logarithmic scale) at different values of 7,
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Fig. 6. Influence of 7, (logarithmic scale) on deviation of 8; from its value at 7, = 1 for two
extreme cases

deviation due to the choice of the yield criterion is in the range — 22% to 28%. This
fact may have a significant effect on the interpretation of the solution for practical
applications. It is important to mention that typical experimental values of 7, belong
to the interval (0.1,1.2).

The only case where the unique solution exists has been investigated here and,
therefore, the effect of the yield criterion on solution behavior is solely quantitative. If
the domain of problem parameters where two solutions or no solution exists is included
into consideration, qualitative differences in solution behavior occur. This feature of
solution behavior will be illustrated for the case described in Section 3.3.
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3.4.2. The velocity of material 2 is higher than the velocity of material 1 at the
bi-material interface (Sections 3.3)

In this case, no solution exists at 7, = 1 and 7, = 0.1912. Therefore, the solution
for T, = 5.23 only will be illustrated here. As before, the friction factors are m; = 0.5
and my = 1.0. The numerical solution is shown in Fig. 7 where quantitative and
qualitative effects of 7, on solution behavior are seen. In the interval 0.87 < 7, < 1.17
the solution exists but is not unique. The domain includes the point 7, = 1. Therefore,
in this domain quantitative difference only with the case when the same criterion for
both materials is assumed is observed. This difference is larger as compared with the
case considered in Section 3.4.1. and may be as large as 100%. Qualitative difference
occurs at 7, = 0.87, in this case the solution is unique, and at 0.85 < 1, < 0.87 no
solution exists.

/ no solution zone

25 -

200 < /
17'5_2 /./0/./'7-‘&

15,0 3 —e— 0,

125 <
10,0 <
7.5 <

(/"
: \‘\ 1,=5.23

e ——a—|

6, []

—a— 0

25 2
0,0 5
085 090 09 100 105 110 1,15
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Fig. 7. Influence of 7, (logarithmic scale) on solution behavior

3.4.3. Frictionless interface

As in the case considered in Section 3.4.2., the solution with no friction at the
bi-material interface exists only if T, = 5.23 (of the values of 7, considered in this
paper). However, in contrast to the case of Section 3.4.2., the solution is unique such
that quantitative difference occurs only. In particular, the value of §; determining the
position of the bi-material interface is presented in Fig 8 for different values of the
friction factor, namely my = 0.1;0.5;1.0. The most significant influence appears for
the highest value of the friction factor.
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Fig. 8. Influence of 7, (logarithmic scale) on solution behavior in the case of frictionless bi-material
interface

4. Conclusions

The system of equations of the plane-strain rigid/perfectly plastic model for ho-
mogeneous materials is independent of the yield criterion and, in dimensionless form,
of the magnitude of the yield stress. When piece-wise homogeneous materials are
considered, the ratios of the shear yield stresses influences solutions whereas the yield
criterion has no effect. However, in practice, the experimental shear yield stress is
usually unknown but the tensile yield stress. Therefore, a yield criterion should be
chosen to transform the tensile yield stress into the shear yield stress involved in the
mathematical formulation of problems. In the case of homogeneous materials, the only
effect of it is the magnitude of stress and load. However, for piece-wise homogeneous
materials the yield criteria may be different for different homogeneous parts of the
piece-wise homogeneous material. In this case, the choice of each yield criterion may
have a significant quantitative and qualitative effect on the solution and, as a result, on
its interpretation for engineering applications. It has been demonstrated for the problem
of planar flow of three-layer material through a convergent wedge-shape channel. In
particular, an effect of the choice of yield criterion on the position of the bi-material
interface has been studied for several combinations of materials and frictional boundary
conditions of practical interest. In some cases, a significant quantitative difference (up
to 100%), as compared with the situation where the same yield criterion is chosen
for all material, has been found. In other cases, the difference is even qualitative (the
solution is unique or multiple for one class of yield criteria and does not exist for
another class).
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