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Microstructural analysis of aMbient cured PhosPhate based-GeoPolyMers  
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an alternative for ordinary Portland cement (oPc) consumption is the production and integration of green cement. in other 
words, the clinker consumption has to be replaced with new low-carbon binders. a possible solution was introduced by the geopoly-
merisation technology. however, the alkaline activation of geopolymers offers the possibility of obtaining greener materials with 
high properties, superior to oPc, but due to the high price of sodium silicate, their industrial use is limited. in the past few years, 
a new activator has been discovered, namely phosphoric acid. This study approaches the obtaining of coal ash-based geopolymers 
activated with acid solution cured at room temperature. accordingly, phosphoric acid, 85% by mass, was diluted in distilled water 
to obtain a corresponding activation solution for h3Po4/al2o3 ratio of 1.0 and two types of geopolymers were ambient cured 
(22°c ±2°c). Moreover, to evaluate the geopolymerisation potential of this system (coal ash – phosphoric acid), seM and eDs 
analysis was performed to investigate their morphologic characteristics.
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1. introduction

currently, the evolution on the industrial scale of geopoly-
merisation technology is severely limited by the lack of standard-
ization and, more important, high production costs [1,2]. even, 
these materials exhibit superior properties to oPc which boost 
their development and interest for the space industry, automotive 
manufacturing, medical devices, water treatment applications 
etc.[3], their main field of application is still limited to civil en-
gineering [4,5]. however, due to their green characteristics and 
simplicity in manufacturing [6,7], the research interest on this 
topic is still growing, therefore, multiple projects are focused on 
standardization development [8], while a considerable number 
of studies have the main goal to reduce the geopolymers manu-
facturing cost by replacing the conventional sodium/potassium/
lithium silicate with other, cheaper, activators [1,9,10].

according to previous publications, the activator with the 
highest success is phosphorous acid. h.K. Tchakoute et al. [11] 
synthesized metakaolin based geopolymers using as hardeners 
phosphoric acid solution and sodium waterglass. according to 
their study, the acid-activated geopolymer indicated the forma-

tion of a new phase, berlinite (alPo4), which was dispersed in 
the matrix positively influencing the mechanical characteristics 
of the samples. Moreover, both types of hardeners successfully 
dissolute the metakaolin, resulting in a homogenous and com-
pact matrix. Based on compressive test results, the geopolymers 
activated with h2Po4 solution exhibited a 53% higher value than 
the alkaline activated one. The increased compressive strength 
was related to the conversion of oxonium complex in si-oh and 
si-o-Po(oh)2 units due to the h2Po4

– presence.
in another study, s. Louati et al. [12], evaluated the mi-

crostructural and mechanical characteristics of illito-kaolinitic 
clay-based geopolymers. Moreover, the influence of the si/P 
ratio on compressive strength and structure density was reported. 
accordingly, it was found that by increasing the si/P ratio up to 
2.75 (al/P ratio of 1) better mechanical characteristics can be 
obtained, besides an increase in the samples crystallinity, i.e. 
higher contents of amorphous phase are presented in samples 
with low si/P ratio. Based on the infrared spectra, the obtained 
samples contained si-o-al-o-P polymeric structure. addition-
ally, it was observed that the illite addition has a low effect on 
metakaolin based geopolymers. hui L. et al. [13], studied the 
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reaction mechanism of h3Po4 activated metakaolin based ge-
opolymers. according to their publication, compressive strengths 
up to 120 MPa can be achieved by a two-stage curing process 
(40°c for 24 h and 60/80°c for 25 h, respectively). Moreover, 
higher acid concentration and/or curing temperature will acceler-
ate the dealumination of metakaolin and condensation of silicate 
tetrahedrons, respectively. Therefore, the reaction mechanism 
consists of dissolution of si and al phases, formation of al-o-P, 
si-o-P and si-o-si units, upon Po4

3– consumption. finally, the 
compact structure will result due to the connection of si or al 
units with P(oal)x(h2o)4–x. accordingly, the empirical formula 
of alkali-activated geopolymers (eq. 1) is different from the one 
of acid-activated geopolymers (eq. 2) [14]. 

 M+
n[−(SiO2)z−AlO2−]n · mh2o (1)

 [−(Si−O)z−Al−O−P]n · mh2o (2)

where M is the alkali cation of K+, Li+ or Na+, n is the degree 
of geopolymerization, z can be 1, 2 or 3 depending on the si/al 
ratio and m is the amount of water [15].

another important difference between the acid and alkali-
activated geopolymers is related to their molecular structure. 
in those based on acid, structural chains or rings are created as 
multiple oxyanions of [Po4]3−, [sio4]4− and [alo4]5− joined by 
sharing edges or corners. Therefore, polyoxyanions, as Mon 
polyhedra, will occur in polyphosphates, pyroxenes and other 
complex structures [16,17]. in other words, the synthesis seems 
to be based on structures created between P and si or P and al, 
not P, si and al. on contrary, those alkali activates consist of 
N-a-s-h and c-a-s-h gels, which molecules include both si, 
al and the activator in the same structure [18,19].

in summary, multiples researcher focused their efforts on 
developing new acid based geopolymers with superior mechani-
cal characteristics compared to alkali-activated ones. however, 
most of them, approach the influence of curing conditions (using 
temperatures above 60°c) or activator concentration (al/P ratio) 
on metakaolin as raw material, while very few approach blended 
systems (metakaolin mixed with fly ash or another aluminosili-
cate source). Therefore, considering the environmental aspects 
(kaoline is a natural material, while elevated curing temperature 
significantly influences the carbon footprint) a more in-depth 
analysis of ambient cured geopolymers, especially, those based 
on wastes is necessary. accordingly, this study aims to analyse 
the microstructure and chemical distribution of coal ash-based 
geopolymers cured at ambient temperature (22°c), compared to 
those cured at slightly high temperature (70°c).

2. Materials and methods

The obtained geopolymer was manufactured by mixing 
the raw material with a commercially available acid solution 
of o-phosphate (h3Po4) with 85 wt% solid content. The solid 
to liquid ratio was optimized to assure an al/P ratio of 1, for 
both types of geopolymers (coal ash-based and coal ash mixed 
with metakaolin based geopolymer).

2.1. Materials

2.1.1. coal ash

Local coal ash has been collected from ceT ii – holboca, 
iasi, romania [1]. The collected powder was dried and sifted 
(only particles with a diameter lower than 100 µm have been 
used) in order to remove the effect of water addition and large 
impurities, respectively. The drying method has been presented 
in [20], while the sifting method has been presented in [7]. 

according to the chemical composition analysis, performed 
by x-ray fluorescence, the coal ash used as raw material belongs 
to class f fly ashes. Moreover, as can be seen from the micro-
structural analysis (fig. 1), the aluminosilicate waste is a mixture 
of fly ash and bottom particles, as there can be seen spherical 
and irregular porous particles, respectively.

fig. 1. The morphology of coal ash used in this study shows fly ash 
and bottom ash presence

Thermal power plant ash is a mineral residue, with small 
particles, in the range of 0.01 to 300 µm, which results from 
coal burning in thermal power plants. The oxides with the 
highest concentrations in their composition are silicon dioxide, 
aluminium oxide, iron oxide and calcium oxide. however, its 
chemical composition varies depending on the nature of the 
coal and the process in the furnace, the degree of separation of 
particles from the exhaust system. for these reasons, the analy-
sis of its chemical composition is very important, especially, 
due to its significant influence on the final characteristics of 
geopolymers.

2.1.2. Metakaolin

The metakaolin used in this study was obtained by low-
temperature calcination (heating up to 700°c at 10°c/min rate, 
and maintaining at 700°c for 30 min.) of commercially available 
kaolin clay [21], leading to the conversion of the starting mate-
rial into aluminosilicate source with high pozzolanic activity. 
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according to the chemical analysis of the metakaolin 
(TaBLe 1), it contains a high concentration of silicon and 
aluminium oxides.

2.1.3. activator solution

as an activator, an acid solution of o-phosphate (h3Po4) 
with 85 wt% was diluted in distilled water to obtain a corre-
sponding activation solution for an h3Po4 /al2o3 ratio of 1.0. 
according to previous studies [12,13], this ratio exhibits the best 
performance in terms of the compressive strength of obtained 
geopolymers.

using the materials presented above, two types of geopoly-
mers have been synthetized. The geopolymer with coal ash (ca) 
in 100% of the solid component and the geopolymer with 50% 
coal ash (by mass) and 50% (by mass) metakaolin (ca_MK) 
were activated with a phosphorous solution at a solid/liquid 
ratio of 0.9 (to assure workability). Moreover, to assure better 
homogeneity, the geopolymer with metakaolin and coal ash was 
mixed in a dry state for 2 minutes, and for 5 minutes after liquid 
addition, according to the procedure presented in [18,19].

2.2. Methods

The raw materials were investigated by x-ray fluorescence 
using an xrf s8 Tiger equipment (Bruker gmbh, Karlsruhe, 
germany), to estimate their chemical composition. Their mi-
crostructure was analysed using scanning electron Microscopy 
(seM, fei Quanta 200, Netherlands), while the elemental 
distribution on the fracture surface was studied with the energy-
dispersive x-ray spectrometer (eDx) equipped on seM.

3. results and discussion

The structure of geopolymeric materials can be correlated 
with their mechanical characteristics [22-23]. Therefore, if 
the morphological analysis of the samples reveals a compact 
structure with a high degree of dissolution and a low number of 
pores, then it is expected that the compressive strength of that 
sample will be higher than that with low structural homogeneity 
[24-25]. among the most important structural parameters, with 
significant influence on mechanical properties, are porosity, 
especially large pores, the appearance of cracks and the number 

of unreacted particles [26-27]. Therefore, the microstructural 
analysis of the obtained samples focused exactly on the study 
of these parameters.

at 100× (fig. 2a), the ca sample exhibit o highly porous 
matrix, with large pores distributed on its surface. also, it can be 
observed that, at room temperature, using coal ash as a precur-
sor, the structure of geopolymers will adopt an understandable 
structure full of small grains scattered on the surface. at higher 
magnification (fig. 2c) these grains seem to have different shapes 
and dimensions. Moreover, most of them show diameters lower 
than 100 µm, but there are also, many that have reacted due to 
the activator presence. accordingly, the partially reacted zones 
(fig. 2e), i.e. the dissolved particles, will result in a geopolymer 
with low mechanical characteristics and high porosity. also, at 
1000× it can be seen that the morphology specific to the initial 
coal ash particles has been changed (the porous particles have 
been converted into glassy grains). 

The geopolymer with metakaolin addition exhibited 
a compact structure with fewer large pores, but smaller in di-
ameter (fig. 2b), compared with the ca sample, where pores 
with a diameter close to 300 µm can be observed. Moreover, 
the sample surface also exhibits few cracks, which can occur 
due to water evaporation during ageing or sample preparation 
for fracture analysis. at higher magnification (fig. 2d), it can 
be seen that the coal ash particles have been partially embed-
ded by the metakaolin matrix, as there are few visible distinct 
particles on the analysed surface. however, at 1000× (fig. 2f) 
it can be that few coal-ash particles didn’t dissolute in the acid 
environment. Moreover, a higher porous matrix can be observed, 
with small grains (coal ash particles) bonded in a dissolute 
metakaolin matrix.

figure 3 shows the elemental distribution on the surface 
of the studied samples. as can be seen, the coal ash-based 
geopolymer exhibits an inhomogeneous chemical distribution. 
This observation can be correlated with the incomplete dis-
solution of the raw material, as shown in the microstructural  
analysis.

compared to the ca sample, the elemental distribution 
of the ca_MK sample, exhibit higher homogeneity, accord-
ingly it can be observed that al and P elements are uniformly 
distributed on the entire surface. however, by overlapping the 
al mapping with P mapping, it can be seen that the highlighted 
areas of al (the zones with the higher concentration) are differ-
ent than those of P. Therefore, the compounds created during  
activation are al-o-P and si-o-P, not common compounds of 
si-o-al-P.

TaBLe 1

oxide composition of raw materials, metakaolin (MK) and coal ash (ca)

oxide sio2 al2o3 fexoy cao K2o Mgo Tio2 Na2o P2o5 oth.*
MK %, wt. 52.8 43.1 1.2 0.7 0.5 0.2 0.9 - 0.2 0.4
ca %, wt. 47.8 28.6 10.2 6.4 2.4 2 1.3 0.6 0.4 0.3

oth.* – oxides in a concentration lower than 0.1% (traces of s, cl, cr, zr, Ni, sr, zn and cu).
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fig. 2. The micromorphology of acid-based geopolymers at different magnifications: a) ca sample at 100×; b) ca_MK sample at 100×; c) ca 
sample at 500×; d) ca_MK sample at 500×;e) ca sample at 1000×; f) ca_MK sample at 1000×

4. conclusions

Two types of geopolymers have been obtained using phos-
phorous acid as an activator and coal ash or coal ash mixed with 
metakaolin as an aluminosilicate source. 

in the case of acid-based geopolymers, coal ash as a precur-
sor resulted in a highly porous structure, therefore, a geopolymer 
formed of multiple unreacted coal ash grains wrapped in the 
geopolymeric matrix. Moreover, due to the phosphorous acid, 
the porous morphology of the initial particles has been changed 
to a glassy grains structure.
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The geopolymer with coal ash and metakaolin exhibited 
a denser structure, with fewer pores, smaller in diameter. also, 
the metakaolin was better dissolved by the activator embedding 
the coal ash particle.

accordingly, future studies should be focused on coal ash 
processing (mechanical activation), in order to obtain acid-
activated geopolymers with compact structures (high dissolution 
degree and low porosity).
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