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ENERGY-BASED YIELD CONDITION FOR ORTHOTROPIC MATERIALS EXHIBITING 
ASYMMETRY OF ELASTIC RANGE

The aim of the paper is to formulate physically well founded yield condition for initially anisotropic solids revealing the 
asymmetry of elastic range. The initial anisotropy occurs in material primarily due to thermo-mechanical pre-processing and plastic 
deformation during the manufacturing processes. Therefore, materials in the “as-received” state become usually anisotropic. After 
short account of the known limit criteria for anisotropic solids and discussion of mathematical preliminaries the energy-based cri-
terion for orthotropic materials was formulated and confronted with experimental data and numerical predictions of other theories. 
Finally, possible simplifications are discussed and certain model of isotropic material with yield condition accounting for a cor-
rection of shear strength due to initial anisotropy is presented. The experimental verification is provided and the comparison with 
existing approach based on the transformed-tensor method is discussed.
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1. Introduction

Recent achievements of materials science are related with 
search for better understanding of deformation mechanisms and 
failure processes in newly designed and manufactured materi-
als. The analysis of thermomechanical processes related with 
many industrial and laboratory applications should account for 
some unconventional mechanical and functional properties of 
investigated solids. Among the uncommon properties of materi-
als one should distinguish in particular, the tailored anisotropy 
of mechanical properties by multiscale controlling the structure 
on the macroscopic, microscopic or nanoscale level. Also asym-
metry of elastic range produced by multiscale processes as for 
instance by multilevel hierarchy of shear banding, [27-29] can 
be accounted for. The latter transpires as the difference of tensile 
and compression strength – the so called strength differential 
effect (SDE), pressure sensitivity of yield limit and the depend-
ency on the third invariant of stress deviator described by Lode 
angle on the octahedral plane as well as anisotropy of yield states. 
One of the goals of modern mechanics of solids is to provide 
such a mathematical description, which enables to account for 
these features. The aim of the paper is to formulate physically 

well founded yield condition for orthotropic solids revealing the 
asymmetry of elastic range. The materials with initial anisotropy 
in the “as-received” state are also considered. 

The advantage of energy-based measure of material effort 
lies in the multiscale character of energy concept. This means 
that the measure of material effort has well defined physical 
interpretation in each scale of considerations, starting with 
quantum mechanical sense of atomic bonds through phenom-
enological potentials in Molecular Dynamics simulations of 
interatomic interactions till modelling of cohesion on the micro-
and macroscopic scale. In this way there is the possibility to 
estimate the critical values of material effort in the cases when 
the specimens of investigated novel material are too small for 
reliable experimental determination, cf e.g. the investigations 
related with deformation and limit states of glassy metals [14] 
and [29]. 

The novelty of the proposed approach is based on the 
hypothesis that certain components of elastic energy density 
are involved in formulating the measure of material effort. The 
notion of material effort can be defined as the state of material 
point of the body related with the change of strength of chemical 
bonds with respect to the natural state. The discussion of physical 
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basis of this concept is contained in [29]. This definition is based 
on the earlier studies of the relation of microscopic observations 
to modelling of viscoplastic flow and failure of solids by [26] 
as well as on the applications of Molecular Dynamics for the 
analysis of the strength of chemical bonds determining, as an 
example, the strength of metal-metal oxide interfaces studied 
in [20] and [19]. Historical account of the idea to use the elastic 
energy density as the material effort measure is given in [29]. 

A definite influence of pressure on the yield stress was 
proved by experiments, cf. e.g. [33,30] and [39]. If the distinct 
difference of these values is observed, the asymmetry of elastic 
range appears. The origins of SDE, which is deeply rooted in the 
electronic basis of material structure can be found in the calcula-
tions of UBER function (Universal Binding Energy Relation), 
discussed for instance for Cu by [18] and also in [29]. 

The complete solution for the case of isotropic body as well 
as for a kind of anisotropy with isotropic volumetric changes 
was provided by [2,3], cf also [38] and [1] where some new 
applications of Burzyński’s criterion in numerical solutions 
of thermo-plasticity problems related with the strength of the 
turbine blades was discussed. 

Mises in his fundamental paper, [15], has presented the 
thorough study of limit criteria for anisotropic solids. An array 
of works following the original ideas of Mises was discussed in 
more detail in [25], where the yield criteria by [8,9] and [37], 
as well as, [4] were considered. 

The formulation of energy-based hypothesis of material 
effort for anisotropic solids revealing SDE was attempted by 
[24,25,35] and [34]. The study is based on the concept of energy-
orthogonal decompositions of stress state introduced by [31,32] 
and [23]. The concept of stress state dependent functions describ-
ing the influence of certain stress modes on the total measure of 
material effort was firstly presented by [2,3]. General formulation 
of a new limit criterion as well as its specification for certain 
elastic symmetries was given in [25] and general methodology 
of acquiring necessary data for the criterion specification was 
presented. The general formulation was specified for orthotropic 
materials and formulated both for two-dimensional and three-
dimensional cases by [34]. Explicit formulae based on simple 
strength tests were derived for parameters of criterion in the plane 
case. However, according to authors opinion, the elaboration 
of complete methodology of theoretical specification of limit 
criteria for assumed material symmetries and its experimental 
identification requires still much work and it is worthwhile 
further research. 

Independently, the discussed requirement of accounting 
for SDE in orthotropic materials was fulfilled in mathemati-
cally precise and comprehensive way by [22]. The authors 
presented a general definition of an explicit orthotropic yield 
criterion together with a general method for defining implicit 
orthotropic yield functions. The latter formulation is based on 
the transformed-tensor method. The principal advantage lies in 
the possibility of adjusting an arbitrary isotropic yield criterion 
to the behaviour of an anisotropic material. As example, the 
adjustment to the [8,9] and [37] criteria was performed. These 

particular cases illustrated the more general methodology for 
obtaining the desired function identification for any other well-
known criterion or set of experimental data. The analysis of the, 
considered in [22], models of isotropic limit criteria leads to 
the novel observation that application of the mentioned above 
energy-based approach by [2,3] provides the similar formulation 
of limit conditions with clear physical interpretation. Therefore. 
the goal of the presented study is the original derivation of pos-
sible simple formulation of limit criteria for materials exhibiting 
orthotropy or initial anisotropy and strength differential effect. 

In Section 2 it is presented the mathematical foundations 
of energy-based limit criterion for orthotropic materials with 
an account for the asymmetry of the elastic range. The initial 
anisotropy effects are discussed and the corresponding multi-
surface Burzyński criterion is determined in the principal stress 
space. The smooth approximation of the multi-surface criterion 
for initially anisotropic materials revealing SDE is derived. In 
Section 3 the comparison with experimental data for  Al2008-T4 
and simulation results for other known criteria published in the 
literature is provided. The comparison of own experimental 
results obtained for E335 steel with the smooth approximation 
of the multi-surface criterion without SD effect, is presented 
in Fig. 5. 

2. Mathematical foundations

2.1. Introduction

As it was mentioned above, strictly quadratic energy-based 
limit criteria cannot account for the asymmetry of the elastic 
range. This was one of the reasons for which [2,3] extended the 
aforementioned limit criterion of [10,11] in order to account for 
the SDE. The author considered only a special class of linear elas-
tic materials for which the decomposition of the elastic energy 
density into the sum of energy of volume change Φv and energy 
of distortion Φf is possible also in some cases of anisotropy: 

 A A D D  (1)

where Aσ, Aε and Dσ, Dε denote the spherical and deviatoric part 
of stress and strain tensors respectively. Such a class of linearly 
elastic anisotropic materials is called volumetrically isotropic. 
It is worthy to note that the problem of volumetric – distortional 
decomposition considered originally by Burzyński in 1928 was 
undertaken more recently by [36] and [5]. Also in [12] the con-
cept of volumetrically isotropic solids with orthotropic symmetry 
was studied and the energy-based interpretation of the yield 
criterion for orthotropic materials by [8] was discussed. 

2.2. Energy-based criterion for orthotropic materials

Consider the linear elastic material having one of eight 
possible symmetry classes – orthotropy, ([13]). For such a case 
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[2,3] derived, according to Eq. (1) the following volumetric – 
distortional decomposition of elastic energy density that can 
be expressed in the orthotropy axes (x, y, z) in the following 
form: 

 

xx yy zz

xx yy yy zz

zz xx
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where B* denotes the compliance modulus of volumetric change, 
while N *, L*, M * are the compliance moduli of distortional 
changes in three perpendicular planes. This original derivation 
made a basis for mathematical formulation of a new yield condi-
tion for anisotropic but volumetrically isotropic materials with 
asymmetry of elastic range (accounting for SDE). 
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Let’s introduce the following notation: 

• σxxT – tensile yield stress for direction x, 

• σyyT – tensile yield stress for direction y, 

• σzzT – tensile yield stress for direction z. 

• σhC – tri-axial compression yield stress. 

Substituting the following stress states 

• T
xx xx yy zz  

• T
xx yy yy zz  

• T
xx yy zz zz  

• C C C
xx h yy h zz h  

to Eq. (3) gives the system of the algebraic equations 
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Solving the system of equations (4-7) for M *, N *, L* and 
B* gives 
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Now the Burzyński criterion is defined by seven unknown 
parameters (σTxx, σTyy, σTzz, σCh, K, δ, ω). The parameter K can be as-
sumed to be equal 1 because it scales only the values of the other 
parameters. Additionally, three experiments performing shears 
in the orthotropy planes (x, y), (x, z) and (y, z) should be used to 
specify the constants P*, Q* and R *. As it is underlined by [2,3]), 
the determined in the relations Eqs. (8-11) parameters correspond 
to the elastic state limit, which in particular can correspond to the 
state of plastic yield. In such a case these parameters describe the 
limit state of the solid body and not elastic constants. 

2.3. Description of the initial anisotropy effects 
in application to metals

Initial anisotropy occurs in the material that is in the “as-
received” state due to different pre-processing methods of manu-
facturing. Our objective is to propose certain simplified account 
for the aforementioned initial anisotropy with use of the model 
of isotropic material as regards elastic and plastic yield properties 
with certain correction of the yield shear strength. In materials 
with a slight initial anisotropy which is produced for instance by 
texture induced in manufacturing process, the main effect which 
is observed is deviation of shear strength with respect to the pre-
dicted one from the Huber-Mises yield condition. Such an effect 
can be described in a relatively simple way within the framework 
of the model for isotropic material with use of certain shear 
strength correction factor – λ the multi-surface Burzyński criterion 
is determined in the space of the principal stresses. Burzyński 
derives the factor λ as a constant resulting from certain relations 
between the elastic moduli for anisotropic solid. However, to 
reduce the number of constants in the yield criterion Burzyński 
replaces the description of considered anisotropic material with 
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a model of isotropic solid. The whole effect of anisotropy is 
contained in the additional correction factor λ, which may be also 
explicitly calculated using the results of strength tests. Substituting 
the following relationship considered by Burzyński [3], p. 206. 
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to Eq. (2) we get 
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Assuming that 
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 (15)

the final formula is given by 
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where 

 
C T
Y Y

Y
 (17)

The relation (15) was derived in Burzyński [2] and [3] 
considering two special cases of the formula (14) for uniaxial 
tension and uniaxial compression. The λ parameter takes values 
in the range 0 < λ < 1. In particular case if λ = 0.5 then there is 
obtained the paraboloid Burzyński criterion for isotropic materi-
als. And if also σYC = σYT = σY then the Burzyński criterion changes 
to the Huber-Mises criterion. 

Based on the previous parametric study, it is clear that some 
singularities are observed which may induce some problems 
during computing, Fig. 1. 

2.4. Smooth approximation method of criterion 
for initially anisotropic materials

If the criterion is to be implemented in FEM codes, the 
corners visible in Fig. 1 should be avoided. The new limit curve 
is a result of approximation with use of fitting parameters Ai, Bi, 

Ci – Eqs. (18), which should fulfil conditions covered by Eqs. 
(19-22), see [21]. 
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To obtain parameters Ai, Bi, Ci the following relations 
must be solved, Eqs. (19-22). The conditions for smoothness of 
a function of the Burzyński criterion are presented as follows: 
for uniaxial tension: 

 

T
Y

 (19)

for uniaxial compression: 

 

C
Y

 (20)

 

C
Y

 (21)

for biaxial compression: 
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Y Y

 (22)

Fig. 1. The cross-section of the Burzyński multi-surface criterion in 
the plane of principal stresses σ3 – σ1 with black circle marks of the 
singularity points
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In Fig. 2 there are indicated points in the cross-section σ2 = 0 
in which the subsequent surfaces of the multi-surface Burzyński 
criterion are valid. The equality of first derivatives is necessary 
in the points (A), (B), (C) plotted in Fig. 2: 
• points (A): 

  

• points (B): 

  (23)

• points (C): 

  

Consequently, after solving the above equations the final 
formulation of the Burzyński criterion is given by 
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where: 
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and σY
CC is a yield stress in biaxial compression. 

The comparison between the component curves the mul-
tisurface criterion and the final Burzyński criterion for initially 
anisotropic materials, Eq. (24), is presented in Fig. 3. The final 
yield surface obtained with use of smooth-out criterion with 
coefficient RB is an elliptic paraboloid. 

This model has been used to present the material descrip-
tion mainly in terms of yield surface for different materials as 
described in Section 3. 

3. Verification of proposed theory

3.1. Comparison with experimental data for Al2008-T4

In the papers of [16,17] the experimental data for the com-
mercial Al2008-T4 aluminium alloy sheet of the yield stress 
directionality measured for uniaxial tensile and uniaxial compres-
sion tests were applied for the verification of considered yield 
criteria, Fig. 4. In the same Figure the proposed yield condition 
in Section 2.2 is included. It can be observed good correlation 

of the proposed criterion with the experimental data shown in 
Table 1, besides the range of biaxial compression. However, it 
can be noted that similar discrepancy occurs in the case of Hill 48 
and Yld 2000-2d yield conditions. The unknown parameters of 
the proposed criterion were calculated with use of the Levenberg-
Marquardt algorithm (LMA) which solves the nonlinear least 

Fig. 2. Experimental points and points of intersection which are used 
to find the final formulation of the Burzyński criterion, Eq. (18). The 
experimental data are for OFHC copper σY

C = 294 MPa point (C) ob-
tained in uniaxial compression test, σY

T = 272 MPa point (A) obtained in 
uniaxial tension test and τY = 156 MPa obtained in pure shear test point 
the midpoint of the section (A-C), the strain rate 0.001 s–1

Fig. 3. Approximation of the inter-section of the Burzyński multi-surface 
criterion with a final formulation, Eq. (24)
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squares problems. During the optimization process the algorithm 
fits the function with free parameters to a set of experimental 
data points by minimizing the sum of the squares of the errors 
between the experimental data and the function. 

Fig. 4. Comparison of the proposed criterion with the experimental data 
and simulation results taken from [16,17]

The parameters used to describe experimental observations 
are reported in Table 1. 

TABLE 1

Yield strength (MPa) of Al2008-T4 in tension and compression

σT0 σT90 σC0 σC90 σTB
211.67 191.56 213.79 214.64 185.00

A good agreement is observed between the Burzyński model 
and experiments. To complete this approach a steel E335 has 
been used showing another shape of yield surface. 

3.2. Comparison with own experimental results 
for E335 steel

The material considered in this part is a steel E355 with 
a BCC microstruture in comparison with the previous one 
which is an aluminium alloy with a FCC microstructure. In [6] 
the results of quasi-static investigation of thin-walled tubes of 
E335 steel subjected to complex states of stress are discussed and 
the yield surface is determined. In Fig. 5 the limit yield curves 
obtained according to the smooth approximation of Burzyński 
yield condition (red line) and the classical Huber-Mises criterion 
(dashed blue line), confronted with the experimental data are 
presented. It can be observed that there is a remarkable difference 
between the both criteria. The reason is that there is a difference 

between yield point in shear obtained experimentally (325 MPa) 
and calculated due to theoretical relation Y Y . The dif-
ference is almost 20%, because the theoretical value equals to 
260 MPa.

Fig. 5. The limit curves describing the experimental data for E335 
steel, the red line – Burzyński yield condition, the dashed blue line 
Huber-Mises criterion [6]

The description of other materials is reported in [6,7] in-
cluding metals and different polymers. In each case similarly 
as in Fig. 4 and Fig. 5 the smooth approximation of Burzyński 
criterion was applied to describe the yield surface and to verify 
with experimental observations. 

4. Conclusions

Recently, the most popular in the studies of elastic-plastic 
deformation processes in anisotropic solid, particularly in or-
thotropic one, is the approach based on the transformed-tensor 
method summarized by [22]. Such an approach was applied also 
in [16,17] where the [2,3] hypothesis states that the elastic energy 
density of distortion and certain part of the energy density of 
volumetric changes are involved in formulating the measure of 
material effort. In the paper the authors attempted to show that 
the application of the mentioned above energy-based approach 
by [2,3] provides the similar formulation of limit conditions with 
clear physical interpretation. As a result, the simple formula-
tion of limit criteria for materials exhibiting initial anisotropy 
and strength differential effect has been obtained. The study 
is confined to the materials that can be described, at least in 
a simplified way, by the class of volumetrically isotropic sol-
ids. In such a case the formulation of the new yield condition 
for orthotropic solids discussed in the Section 2.2 is possible. 
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Verification with the experimental data discussed in the Section 
3.2 and comparison with the existing yield criteria show that the 
proposed yield condition is a satisfactory approximation, which 
can be used in numerical simulations of industrial deformation 
processes. Also the next step of approximation of the descrip-
tion of materials with initial anisotropy with use of the model of 
isotropic solid is considered. The effects of initial anisotropy are 
merely concentrated in a certain correction of the shear strength 
limit vis-à-vis the Huber-Mises criterion, as discussed in the 
Section 2.4 as well as in [7] and [6], finds the confirmation with 
experimental results and can be applied in the simple analysis 
of deformation processes, cf. [21]. 

It is worth mentioning that the other original approach 
presented in [40,41] leads to the analysis of anisotropic yield 
condition with application of fractional calculus. It might open 
a possibility of the energy-based Burzyński limit criterion as 
a basis for fractional formulation of viscoplasticity and plastic-
ity models.
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