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PARAMETRIC STUDY OF GEOMETRY EFFECT ON RESPONSE TO APPLIED LOADINGS OF METALLIC HONEYCOMB 
STRUCTURES BY VIRTUAL TESTING OF MESOSCALE MODELS

In this paper were conducted virtual tests to assess the impact of geometry changes on the response of metallic hexagonal 
honeycomb structures to applied loadings. The lateral compressive stress state was taken into consideration. The material properties 
used to build numerical models were assessed in laboratory tests of aluminium alloy 7075. The modelling at meso-scale level allow 
to comprehensive study of honeycomb internal structure. The changes of honeycomb geometry elements such as: fillets radius of 
the cell edges in the vicinity of hexagonal vertexes, wall thickness were considered. The computations were conducted by using 
finite element method with application of the ABAQUS finite element method environment. Elaborated numerical models allowed 
to demonstrate sensitivity of honeycomb structures damage process response to geometry element changes. They are a proper tools 
to perform optimization of the honeycomb structures. They will be also helpful in designing process of modern constructions build 
up of the considered composite constituents in various branches of industry. Moreover, the obtained results can be used as a guide 
for engineers. Conducted virtual tests lead to conclusion that simplification of the models of internal honeycomb structure which 
have become commonplace among both engineers and scientist can lead to inaccurate results.

Keywords: Virtual testing, Aluminium hexagonal honeycomb, Compression behaviour, Quasi-static, Deformation, Effective 
elastic property, Buckling, Collapse

1. Introduction

The sandwich structures are widely used in aerospace 
industry due to the fact that they allow to construct lighter and 
mechanically beneficial structural parts. In these type of compos-
ites the stiff skins are separated by lightweight honeycomb core 
which increases the moment of inertia. In the role of the cores 
of sandwich structures are used polymeric foams [1,2] and hon-
eycomb structures. Their main role in composite structures is to 
carry the shear loads in plane and normal loads out of plane from 
composite skins. The special case of loadings are low-velocity 
impacts [3]. Their big advantage is high impact energy absorption 
capacity. The dynamic analyses of aircraft honeycomb sand-
wich structures was done in [4,5]. Nowadays, this feature can 
be improved by creation of hierarchical honeycomb structures 
which are constructed by replacing each vertex of a traditional 
hexagonal honeycomb with a smaller hexagonal topology and 
repeating this process for constructing fractal-appearing honey-
combs with higher order of structural hierarchy [6]. In case of 
blast loadings the stepwise graded cores are very promising [7]. 
The way to improve the sandwich structures lifetime is filling 
of honeycomb type cores with foam, it allows to enhance the 
damage resistance to debonding propagation [8].The structures 
with local face-core interface damage are considered in [9,10]. 

In the structural part of aircraft subjected to vapor condensation 
process the closed cell honeycomb cores can be not suitable due 
to the fact that accumulated water can increase the weight and 
reduce the mechanical properties the honeycomb cell materials 
such an NOMEX. On this field of structure development the new 
generation of sandwich cores called “folded cores” or “origami 
like cores” was introduced, [11,12]. Development of modern 
manufacturing techniques like additive manufacturing reduces 
the current limitations in geometry of cores [13].

The research of each variation of composite internal struc-
ture involves a large amount of specimen testing to investigate 
the achieved effect. The time and cost of this process can be 
reduced by using the virtual testing technique. Therefore, the 
Finite Element Method (FEM) has become most commonly 
used tool in the development process of the internal structures 
of aircraft composites.

Described fields of honeycomb structures development 
require improvement of their modelling method. The numerical 
methods still provides more accurate solutions both in macro-
scale modelling of sandwich structures [14] and in meso-scale 
modelling. Therefore, this fact they are a proper tool to predict 
mechanical and thermal properties of the cores before their manu-
facturing. It’s allows to perform accurate optimisation process to 
achieve demanded mechanical characteristic of the composites.
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Literature survey leads to the conclusions that despite of 
substantial development of numerical simulations in the last 
two decades many authors treat as negligible the geometrical 
imperfections such as: non zero radius of fillets in corrugated 
sheets of aluminium walls. Figure 1 presents the microscopic 
image of exemplary real extruded honeycomb panel. This panel 
contains cells 4.3×3.0 mm. The measurement performed on this 
specimen indicate that mean fillet radius R is equal to 0.286 mm. 
This problem was partially mentioned in [15]

Fig. 1. Microscopic image of real aluminium honeycomb structure

Therefore, this study is aimed to explain the effect of ge-
ometry simplifications including different:
• thickness’ of honeycomb walls t and 
• different fillet radius R
on the mechanical response of the honeycomb structure. Moreo-
ver, the relationships between the effective properties such as out 
of the plane modulus of elasticity Ez, critical compressive load 
Fmax and geometrical parameters such as the wall thickness t and 
the fillets radius R were assessed.

2. Assessment of the aluminium alloy 7075 properties

The response of honeycomb structures to applied loadings 
may be strongly influenced by cell wall material mechanical 

properties. Therefore, in the performed calculations the accurate 
material model was employed.

The material data were assessed using flat specimen made of 
aluminium alloy 7075 with cross section 10×2 mm, which were 
subjected to the uniaxial tensile test performed on the MTS 810 
testing machine, Fig. 2. The deformations field were measured 
by Digital Image Correlation (DIC) system ARAMIS.

The uniaxial tensile test was performed with constant 
displacement rate conditions. In order to describe degradation 
process of this material a scalar damage parameter D(n) was 
estimated, which was related to the elastic response during 
deformation history. In order to measure values of the D(n) 
a loading-unloading-reloading (LUR) cycles with gradual in-
crease of displacement (Fig. 3) was programmed in MultiPurpose 
TestWare application of the Flex Test software prepared by MTS. 
The rate of displacement was equal to 0.003 mm/min for loading 
and unloading cycles. The typical relation of normal stress σ11 
on the strains ε11 acquired during the tests is plotted in Fig. 3.

Fig. 2 The tension test setup with dot pattern for the DIC system 
ARAMIS

Fig. 3. The loading-unloading-reloading (LUR) test of the considered aluminium alloy
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The normal stress σ11 was calculated by dividing the ap-
plied load by initial cross section of the specimen A. The normal 
strains ε11 were calculated by dividing the displacement incre-
ment ∆ of the segment AB (Fig. 1) by the base length |AB|:

 
11 11,
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  (1)

Application of the ABAQUS code for numerical solution of 
the mechanical response of the honeycomb sandwich structures 
made of metallic material requires definition of the plastic and 
hardening properties as functions of true stress σt and plastic 
strain εpl expressed by:

 σt = σ11(1 + ε11) (2)

 εt = ln(1 + ε11) (3)

 0

t
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The value of the scalar damage parameter D(n) is defined 
for the n-th LUR cycle as:
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where E (n) is modulus of elasticity in (n) unloading cycle of 
the test, while E0 is modulus of elasticity in first unloading 
cycle (n = 1). The base elastic parameters were determined by: 
E0 = 71.502 GPa and νo = 0.346. These initial elastic properties 
were used in elastic region of material response in honeycomb 
panels analyses. Figure 6 shows the distribution of the D(n) cor-
responding to residual plastic strain εt

res which corresponds to 
the end of each unloading process in cycle (n), Fig. 4.

Fig. 4. Damage parameter D(n) as function of residual plastic strain εt
res

Approximation of experimental results can be done with 
the help of the following logarithmic function:

 

( ) ( )  0.00967145743950258 ln( ) +

 0.09922410686608280

n res res
pl plD  

 (6)

which is valid for the room temperature.

3. Virtual testing of honeycomb panels under compression 
along the honeycomb walls

A geometry of the honeycomb structure and its basic param-
eters are shown in Fig. 5. In this paper we investigated change of 
hexagonal vertex radius (Fig. 1) in range: R = 0 mm; 0.25 mm; 
0.50 mm; 0.75 mm and 1.00 mm. Moreover, for each filet radius 
we analysed 4 different wall thickness t = 0.025 mm; 0.050 mm; 
0.075 mm and 0.1 mm. The height of considered honeycomb 
structures is equal to h = 12.7 mm, whereas the cross sectional 
area of the specimens loaded in virtual compressive tests is equal 
to AHC = 13.568*25.659 mm = 348.142 mm2.

Fig. 5. The virtual compression test conditions

Fig. 6. Dimensions and geometrical parameters of the considered 
honeycomb panels

The classical honeycomb structure is manufactured by 
printing the adhesive strips on the material ribbons in staggered 
pattern, stacking the material ribbons, curing the adhesive 
under pressure and elevated temperature. At the final stage 
of manufacturing the prepared structure is expanded to form 
hexagonal honeycomb. Another way to manufacture the hon-
eycomb structures is assembling previously corrugated sheets 
[16]. In the consequence of this manufacturing process in places 
where the ribbons are joined the thickness of wall is doubled 
(see Figs. 1 and 6).
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In the literature, there are many approaches concerning 
choosing the proper size of the representative volume element 
(RVE) in modelling of the honeycomb structures, which should 
be taken into account in numerical calculations. For example in 
[17] authors used one hexagonal shape cell, but in [18] a frag-
ment of the cell with Y shape was applied. The comprehensive 
study performed in [18] proved that both large and small 
domains like one unit cell and 4×4 cells gave identical initial 
collapse responses up to the second load peak. The differences 
between the responses of the various domains start during 
formation of the second fold. The laboratory tests performed 
with real specimens lead to conclusion that stable results for 
elastic properties of honeycomb cores may be achieved, when 
not smaller sample than 13×13 cells were used [19]. In the 
present study we used a fragment of the honeycomb structure 
as shown in Fig. 7.

Fig. 7. The analysed honeycomb RVE with different filled radii a) R = 0 
b) R = 0.75 mm

To perform the flatwise compression test conditions [20] 
we analysed the honeycomb RVE loaded by two rigid plates, 

Fig. 5. The edges of the honeycomb cells are tied to the plates 
surfaces. The bottom plate has fixed all degrees of freedom while 
the top plate has enforced uniform displacement in – Z direction.

Every real honeycomb structure has geometrical and ma-
terial imperfections which leads to reduction of the effective 
mechanical properties. Moreover, the honeycomb structure 
contains adhesive joints between the ribbons. An example of 
imperfections as debonding of the adhesive joints in the hon-
eycomb sandwich made of the NOMEX core was presented 
in [20].

Different techniques how to incorporate structural imper-
fections into numerical models are described in [21]. They are 
include:
• a node shaking,
• a random material property assignment,
• a pre-buckled cell walls

The other modern approaches how to include in the FEM 
analysis:
• geometrical imperfections due to manufacturing process,
• material imperfections such as Young modulus,
• changes of the walls thickness
were presented in [17]. All imperfections can be included in the 
model by defining of different elastic constants and cell wall 
thickness for each finite element according to a pre-defined 
field based on statistical distributions of these quantities. These 
statistical distributions of geometric parameters variation are 
estimated using a 3D-photo-scanning and CT-scanning.

In this paper imperfections were taken into account by 
change the nodes coordinates in relation to the perfect geometry 
on the base the displacements obtained in buckling analyses. 
The first ten buckling modes were superposed onto unit cell’s 
mesh and scaled to 10% the wall thickness. The geometry of the 
first and the 100 buckling modes of considered structures are 
presented in Fig. 8. Table 1 contains eigenvalues corresponding 
to the elastic buckling loads.

Fig. 8. Buckling modes of the considered honeycomb structures for the: a) mode 1 and b) mode 100



957

The results summarized in Table 1 indicate that the elastic 
eigenvalues are strongly depended on the fillet radius R. The first 
eigenvalue decrease whereas the higher eigenvalues increases 
when the fillet radius is higher. In case of the thin-walled honey-
comb panels (t = 0.025 mm) the relative difference between the 
first buckling loads is equal to 5.5%, whereas, in the thick-walled 
panels (t = 0.1 mm) this difference is equal to 14%.

TABLE 1

Eigen values η: 1, 50 and 100 for considered honeycomb 
panels

R [mm] T [mm] η1 η50 η100

0.00

0.025 70.394 194.750 210.260
0.050 552.440 1551.700 1674.300
0.075 1824.300 5203.700 5607.400
0.100 4221.600 12227.00 13148.000

0.25

0.025 66.747 202.790 219.700
0.050 527.740 1576.100 1680.600
0.075 1751.700 5190.800 5536.000
0.100 4054.300 11983.000 12831.000

0.50

0.025 64.132 234.660 250.650
0.050 502.220 1704.700 1848.900
0.075 1664.200 5447.300 5996.600
0.100 3865.200 12321.000 13261.000

0.75

0.025 63.859 284.840 302.660
0.050 499.420 1943.400 2161.800
0.075 1665.500 5903.100 6779.400
0.100 3893.000 13251.000 15265.000

1.00

0.025 64.754 349.740 351.280
0.050 485.660 2274.500 2358.400
0.075 1592.400 6522.200 7020.400
0.100 3686.800 13904.000 15087.000

As illustrative examples several numerical virtual tests 
(Fig. 5) were performed for quasi-static compression analyses 
using ABAQUS/EXPLICITE. The honeycomb cells are discre-
tized using S4 – a fully integrated 4 node doubly curved general 
purpose shell finite elements (FE). The mesh convergence stud-
ies performed in [22] indicates that convergence was achieved 
when the FE size is equal to 0.2 mm for the cell dimensions 
4.2×3.2 mm. In conclusion, the authors suggest to use FE of 
the size 0.4 mm for a good trade-off between convergence and 
computational effort. The similar results were achieved in [6]. 
In the present study to achieve good representation of curved 
faces in the vicinity of the hexagonal vertexes the square FE 
with approximate mesh dimension 0.1 mm were used. For very 
small fillet radius, i.e. R = 0.25 mm, the constraint was build to 
divide the corner into not less than 8 FE.

In contrast to the purely elastic response and initial post-
buckling process crushing process due to compression of the hon-
eycomb panels involves local bending and self-contact between 
the internal structure constituents. Therefore the EXPLICITE 
codes are the best for mesoscale modelling of the honeycomb 
structures. The computational time in ABAQUS/EXPLICITE 

quasi-static analyses can by reduced by mass scaling, what 
allows to increase the time increment. To speed up calculation 
procedure in this study the mass was scaled by factor 1e4, which 
increased the time increment hundred-fold. Nevertheless, the 
kinetic energy remains only small fraction of the strain energy 
as shown in Fig. 9.

Fig. 9. Comparison of the strain energy to kinetic energy in quasi-static 
analyses of the honeycomb panels response

4. Numerical results of the compression tests

The compression test (Fig. 5) was continued to the final 
failure. Figures 10,11 present deformed shape and calculated 
stress distributions at failure stage of deformation process. Both 
figures are related to the internal honeycomb structure with the 
walls thickness t = 0.05 mm. In Fig. 10, when the fillet radius 
of the structure R = 0 mm we can observe an ordered pattern of 
efforted and not efforted regions. In the vicinity of hexagonal 
vertexes levels of the Huber-von Mises reduced stresses are 
higher than the yield stress σy. For the internal structure of the 
honeycomb with R = 1 mm (Fig. 11) we observed much larger 
areas of yielded zones.

Fig. 10. Huber-von Mises reduced stress distribution in the honeycomb 
structure with R = 0 mm

The behaviour of the analysed fragments of the struc-
tures (Figs. 6,7), subjected to compression, are presented in 
Figs.  12-15. Fz is the reaction force while Uz is the displace-
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ment in vertical Z direction (Figs. 10,11). The obtained load-
displacement curves include three regions:
• a linear part at the beginning of loading process,
• a nonlinear part until the force reach the local maximum,
• in the last region the load tend to reach plateau stress in the 

structure.
In Fig. 12 we can observe strong impact of the fillet radius 

R on derived critical loading of the structure. The strongest 
critical force was achieved for structure with R = 0 mm. Differ-
ence between this case and typical structure with R = 0.25 mm 
is equal to 26.547%.

Fig. 12. Response of the honeycomb panels (with t = 0.025 mm) to 
applied deformation process

In case of two times thicker walls in the considered hon-
eycomb, i.e. for t = 0.05 mm (Fig. 13) the effect of the fillet 
radius R change is smaller. The difference between the internal 
structure with R = 0 mm and for the case with R = 0.25 mm is 
equal to 8.921%.

The virtual compression tests done with the honeycomb 
structure built of ribbons having 0.075 mm thickness indicate 
the smallest sensitivity of their load-displacement characteristic 
in relation to the parameter R. The relative difference between 
the critical load for R = 0 mm and R = 0.25 mm is equal to 3.5%. 
Despite of this fact the early post-buckling paths are significantly 
different for structures with various values of the fillet radius R.

Fig. 13. Response of the honeycomb panels (with t = 0.05 mm) to ap-
plied deformation process

Fig. 14. Response of the honeycomb panels (with t = 0.075 mm) to 
applied deformation process

For the thick honeycomb cores in the panels with very thick 
aluminium walls of order t = 0.1 mm once again the strong influ-
ence of R was observed. The relative difference between critical 
loads in cases R = 0 mm and R = 0.25 mm is equal to 11.372%.

Fig. 15. Response of the honeycomb panels (with t = 0.10 mm) to ap-
plied deformation process

Summarizing, in each considered case of the honeycomb 
internal structure we observed strong influence of the fillet ra-

Fig. 11. Huber-von Mises reduced stress distribution in the honeycomb 
structure with R = 1 mm
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dius R on the mechanical response of the sandwich subjected to 
compressive deformation. The highest sensitivity was indicated 
for the honeycomb structures with thinnest walls.

Conducted numerical tests allow also to estimate values 
of the effective elastic modulus Ez in the analysed structures in 
Z direction (Figs. 5,6). This value is defined as a ratio between 
the stress increment Δσz = ΔFz /AHC and the strain increment 
Δεz = ΔUz /h. The increments are computed in linear parts of 
the load-displacement curve. The obtained values of Ez are 
collected in Table 2, which contains the critical values of the 
compressive forces Fmax and critical equivalent macroscopic 
stresses σmax achieved during the virtual tests of the analysed 
honeycomb panels.

TABLE 2

Quasi-static virtual compression test results 
for the honeycomb panels

t [mm] R [mm] Fmax [N] σmax [MPa] Ez [MPa]

0.025

0.00 822.480 2.362 1051.021
0.25 649.939 1.867 1031.087
0.5 605.988 1.741 1015.056
0.75 540.338 1.552 999.4782
1.00 605.812 1.740 986.468

0.050

0.00 2846.150 8.175 2180.756
0.25 2613.040 7.506 2135.748
0.5 2427.450 6.973 2087.603
0.75 2407.840 6.916 2049.735
1.00 2426.060 6.969 2017.012

0.075

0.00 6160.170 17.694 3272.783
0.25 5950.800 17.093 3214.112
0.5 5826.560 16.736 3143.454
0.75 5919.500 17.003 3084.048
1.00 5947.100 17.082 3033.396

0.100

0.00 10716.100 30.781 4383.247
0.25 9621.860 27.638 4290.569
0.5 9732.470 27.955 4203.088
0.75 9488.020 27.253 4124.311
1.00 9133.480 26.235 4055.589

The effective modulus of elasticity Ez exhibit a dependency 
on the fillet radius R parameter, but the effect is not so substantial 
as in case of the critical load. The relative difference of the values 
Ez between two cases for R = 0 mm and for R = 0.25 mm is close 
to 2% and is practically not independent of the wall thicknesses t. 
The total change of the Ez values in the considered range of the 
fillet radius R form 0 up to 1 mm not exceeds 10%.

The data gathered in Table 2 indicate also, that the relation 
Ez(R) in considered range is almost linear. An exemplary relation 
for the honeycomb panel with t = 0.075 mm is plotted in Fig. 15. 
The linear fitting of relations Ez (R) for the each considered hon-
eycomb panel can be performed with good correlation coefficient R2. 
Estimated relations are presented below:
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  (7)

Moreover, relationship of the effective modulus of elas-
ticity with respect to the cell wall thicknesses t computed for 
R = 0.025 mm is also linear:

 0.025( )  43429.7151 46.3163z RE t t   (8)

Theoretical relations of effective elastic properties of hex-
agonal honeycomb panels in plane x y, (Fig. 11) are presented 
in [23].

5. Conclusion

The purpose of this paper was to perform several numerical 
tests in order to estimate the influence of geometrical param-
eters of the honeycomb core on the mechanical response of the 
sandwich structures. The numerical quasi-static compressive 
deformation processes at meso-scale were performed. Moreover, 

Fig. 16. Effect of the fillet radius R value on the effective Young modulus Ez of the honeycomb core with the wall thickness equal to t = 0.075 mm 
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the experimental tests of the honeycomb core material – the alu-
minium alloy 7075 – were performed. The results of these tests 
were used to assess the honeycomb cells properties and further 
to calibrate the FEM models. Based on performed numerical 
calculations the following conclusions can be drown:
• The fillet radius R and the wall thickness t parameters 

strongly influence the honeycomb core response in the 
sandwich structures.

• The strongest critical forces was achieved for idealised 
structures with R = 0 mm.

• The highest difference between critical forces derived 
between cases R = 0 mm and R = 0.25 mm equal to 
26.547% was achieved for honeycomb with thinnest walls 
t = 0.25 mm.

• The smallest sensitivity to the R changes occurred in the 
sandwich structures with the honeycomb wall thickness 
t = 0.75 mm.

• Increase of the R parameter lead to decreasing the effec-
tive elastic honeycomb properties and the critical force in 
compressive stress state.

• The dependence of the effective young modulus along Z 
direction in relation to R is linear. The difference between 
cases of the fillet radius 0 mm and R = 0.25 mm is close to 
2% for each considered wall thicknesses.
Further investigations are necessary to analyse impact of the 

fillet radius value R and the wall thickness t on the honeycomb 
structures response subjected to shear loadings. Moreover, dam-
age processes leading to cracking (e.g. [25-43]) of the sandwich 
panels should be taken into account in the next papers.
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