
Arch. Metall. Mater. 63 (2018), 2, 839-844

G. NAPOLI*, A. DI SCHINO*# 

MODELLING GRAIN GROWTH KINETICS IN STEELS

Steel is a versatile material that has found widespread use because of its mechanical properties, its relatively low cost, and 
the ease with which it can be used in manufacturing process such as forming, welding and machining. Regarding to mechanical 
properties are strongly affected by grain size and chemical composition variations. Many industrial developments have been carried 
out both from the point of view of composition variation and grain size in order to exploit the effect of these variables to improve 
the mechanical proprieties of steels. It is also evident that grain growth are relevant to the mechanical properties of steels, thus 
suggesting the necessity of mathematical models able to predict the microstructural evolution after thermo cycles. It is therefore of 
primary importance to study microstructural changes, such as grain size variations of steels during isothermal treatments through 
the application of a mathematical model, able in general to describe the grain growth in metals. This paper deals with the grain 
growth modelling of steels based on the statistical theory of grain growth originally developed by Lücke [1] and here integrated to 
take into account the Zener drag effect and is therefore focused on the process description for the determination of the kinetics of 
grain growth curves temperature dependence. 
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1. Introduction

Controlling the evolution of microstructure is crucial to 
the optimization of steels properties through processing. Con-
sequently, it has been a primary goal of computational efforts 
in metallurgy to develop the capability to model microstructural 
transformations under realistic conditions with predictive ac-
curacy [2]. For this purpose, a great deal of attention has been 
devoted to the technologically important phenomenon of grain 
growth in polycrystalline materials, which has been studied 
experimentally and theoretically for decades, yet has proven 
surprisingly difficult to model analytically [3-4].

Grain growth after primary recrystallization is described as 
taking place in two different forms, either in form of continu-
ous grain growth (“normal”) or in form of discontinuous grain 
growth (“secondary recrystallization”). In the development 
of this area, two stages can be distinguished. In the first stage 
simple and mostly qualitative interpretations of grain growth 
have been given. For continuous grain growth, Beck [5] pre-
dicted an increase of the average grain diameter with time as 
t1/2 which was practically never found. The second stage of the 
development of this area is characterized by more sophisticated 
approaches. Hillert [6] transferred the statistical treatment of 
Ostwald ripening of precipitates to grain growth according to 
the Lifshitz-Slyozov-Wagner theory [7-8]. Moreover Hunderi 

and Ryum [9] introduced a deterministic model considering 
individual boundaries and describing the change of size of 
the individual grains by an extremely large set of differential 
equation (one for each grains) which they solved numerically. 
Finally Abbruzzese [1] developed further the Hillert model by 
calculating a critical radius that was only postulated by Hillert 
[6]. The main novelty of Abbruzzese study was to use discrete 
grain size classes which reduce significantly the numbers of 
differential equations (one for each class) and thus to the pos-
sibility to calculate numerically the evolution of the grain size 
distribuition. In recent years the Monte-Carlo simulation was 
widely used to simulate grain growth including also the case 
of Zener drag [10]. Hesselbarth and Gobel used, with success, 
a method named cellular automata in simulation of the theory 
of Johnson-Mehl-Avrami-Kolmogorov and other successful 
mesoscale simulations for microstructural evolution including 
front tracking model [11], vertex model [12] and phase field 
model [13] have been developed. While analytical models, 
such as Abbruzzese and Lücke, predict all the characteristics of 
microstructural evolution (i.e., grain size and grain size distribu-
tion), the goal of mesoscale computational simulations is rather 
different: to generate snapshots of the evolving microstructure 
with time. Using the computational version of metallography, 
both local and ensemble properties of the microstructure may 
be determined from these snapshots.
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2. Description of the grain growth statistical model 

As far as concerns grain growth, the statistical model, 
originally developed by Abbruzzese and Lucke [1], is based on 
the assumptions of: 
• Super-position of average grain curvatures in individual 

grain boundaries. A grain v is characterized by volume V, is 
assumed to growth at the expense of a neighbouring grain μ 
with a rate:
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Here the “radius” Rv of a grain v is defined according 
Vv = 4πRv

3/3. Svμ is the area of contact between the two 
grains v and μ, and m, γ and M = 2m γ represent respectively, 
the mobility, the tension and the diffusivity of the grain 
boundary vμ. By taking into account all Nv neighbours of 
this grain one obtain for all its total growth rate:
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With v = 1, 2….NG and NG being the total number of grains, 
this expression represent a system on NG differential equation 
for the unknown Rv(t). However, because of the large numbers 
of grains NG and thus a large number of equation is necessary to 
obtain a significant simulation, this leads to a great computational 
difficulties. Therefore, with the second and third simplifying 
assumptions will be easy to overcome these difficulties:
• Homogeneous surroundings of the grains. As a first ap-

proximation is assumed that for each grain v the individual 
neighbourhood of Nv individual grain can be replaced by 
a surrounding obtained by averaging over a neighbourhood 
of all grains of the same radius Rv. Since then all grains of 
the same radius would have the same surrounding, also 
their growth rate would be equal. This means that then all 
grains could be collected in classes characterized by their 
radius and that the behaviour of only different classes has 
to be considered, instead of single grains. In the following 
these classes will be denoted by the indices i, j…Ns being 
the total number of classes. From the mathematical point of 
view the simplification consists in replacing in Equation 3 
the individual contact area svμ by averaged area aij = Aij/nj,  
nj is the total number of grains in class j and Aij is the total 
area of contact between the two classes i and j. Then, it 
follow that:
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• A random array of the grains namely the probability of 
contact among the grains is only depending on their relative 
surface in the system. In this case the area of a grain of the 
class i is divided between the neighbouring grains of the 
class j in proportion to the individual surface area:
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The integration of all the above assumptions in the model 
leads to the following final form of the grain growth rate equa-
tion:

 

2

2

41 1 
4

j ji

j ij j jj

n RdR
M

dt R R n R
  (5)

Where M = 2mγ again the boundary diffusivity and in our case 
study m was evaluated according to the Stokes-Einstein rela-
tionship [14]:
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Where D is the diffusion coefficient, KB is the Boltzmann con-
stant, ΔE is the activation energy of the process and T is the an-
nealing temperature. D was chosen proportional to the diffusion 
coefficient of Fe in Fe-γ. 

According to Zener [4], particles cause inhibition of grain 
boundary motion which can be considered as a retarding forces 
acting homogeneously along the moving boundary and has 
a similar behaviour of a frictional forces. In order to apply this 
description to grain growth phenomena has to be taken into ac-
count the magnitude of this force IZ. In fact, for a small external 
driving force P no motion of the boundary takes place. Only 
if external force surpasses a maximum force IZ0 the particles 
can exert, the boundary moves, but with a net driving force 
ΔP = P – IZ0. This lead to three ranges for this net force acting 
on boundary [15]: 

ΔP = P – IZ0 for P > IZ0

ΔP = 0 for –IZ0 < P < IZ0

ΔP = P + IZ0 for – IZ0 > P 
 (7)

For the maximum Zener force IZ0 the will be used the usual 
expression where fp is the volume fraction and rp is the mean 
radius of the particles; β is a proportional constant in the range 
of 0.75-1. 
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With Equation 7 and 8, one obtains the net force ΔPij in 
the three ranges: 
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Therefor the growth rate for each class i can be derived as:
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Where: 
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2.1. The power law for grain growth

Burke and Turnbull were among the first to model kinetcs of 
grain growth and they assumed that the driving force for growth 
is the reduction in grain boundary area and subsequent release of 
boundary surface energy, γgb [16]. The model was proposed for 
the case of normal grain growth in a pure homogeneous material 
and the assumption was made that only forces acting on bounda-
ries are those due to surface curvature. It was also assumed that 
the average radius of curvature of a boundary is proportional to 
the grain diameter, d, and the rate of change of the diameter is 
proportional to the driving force for growth F, as described by: 

 *
d d

k F
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Where k is a constant of proportionality.
Integrating Equation 13 Burke and Turnbull were able to 

derive the parabolic equation for the kinetics of isothermal grain 
growth [16]:

 d 2 – do
2 = K * t (14)

Where do the grain size is at time equal to zero, t is time, K is the 
grain growth constant. Equation 15 defines the relation between 
the proportionality constant K and temperature T at which the 
grain grow.
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Where Q is the activation energy for grain growth, R is the gas 
constant and T is the absolute temperature.

Unfortunately, experimental result often do not obey to the 
parabolic equation. For this reason, the original equation is often 
modified and used in this form [18-19]:

 d n – do
n = K t (16)

Where n is the grain growth exponent. The equation 16 is referred 
to as the power law for grain growth. In an ideal state, grain 

growth is controlled only by diffusion. In this case the exponent 
n = 2 and the Equation 2 for ideal grain growth for simulation 
calculation is used. Furthermore, grain growth can be controlled, 
for example, by diffusion together with the precipitation phase 
in growing grains, the exponent n = 3 is used. If the common 
effect of precipitation and diffusion along grain boundaries is 
observed, the exponent n = 4 is used. In the case when the grain 
growth is mainly influenced by precipitation, the exponent is 
close to the value n = 5 [18].

3. Results

3.1. Determination of the grain growth
kinetics

The model devoleped by Abbruzzese and Lucke allow to 
simulate the annealing process of the steel and gives as output 
the mean radius of the austenitic grains over time. Three tempera-
tures, ranging from 1000°C to 1200°C, have been investigated 
to evaluate the grain growth constant value K. During the first 
phase the initial grain size value D0 and partial pre-exponential 
constant are determineted for every holding temperature. Each 
of the tested temperature are expressed by the trend line (Fig. 1) 
and its basic equation by the fitting method, with n parameter 
of the Equation 16 equal to 2 (for ideal grain growth). From 
the trend line slope it is possible to use the value of the partial 
pre-exponential constant KT and the initial grain size D0

2 for the 
particular temperature, which is obtained from the fitting line 
equation at the starting time. All measured and computed values 
are shown in Table 1.

TABLE 1

Partial pre-exponential values KT and grain size D0
2.

Simulated temperature
1000°C 1100°C 1200°C

KT [μm/s] 0,23 0,86 5,82
D0

2 [μm] 5,70 5,82 2,68
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Fig. 1. Square dependence of average grain size on time
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Result shows, according to Equation 15, that the values of 
the acquired partial pre-exponential constant KT, which are de-
pendant on reversed values of the absolute holding temperature 
(Fig. 2 and 3). 
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Fig. 2. Dependence of proportionally constant KT (blue dot), obtained 
from the model, on absolute temperature values and exponential fitting 
curve of KT (dashed orange line)

The activation energy Q and the total pre-exponential 
constants K0 it is possible to obtain by the way shown in Fig. 3. 
The logarithm values of the acquired partial pre-exponential 
constant KT, which are dependent on reversed values of the ab-
solute holding temperature, are plotted in the graph. Thanks to 
that, the trend line can be created. Its equation can be expressed 
in the following format: 

 y = A * x + C (18)
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Fig. 3. Dependence of proportionality constant K on absolute tempera-
ture reversed value.

The constant C in Equation 18 defines the slope of the trend 
line, and will be, together with the gas constant R, further used to 
calculate the activation energy Q in agreement with Equation 19. 

The constant B is used to calculate the total value of the total 
pre-exponential constants K0 according to Equation 20.

 Q = – (R *A) (19)

 K0 = eC (20)

According to the trend line in Figure 3 and by means of 
Equation 19 and 20, activation energy values Q = 123.88 KJ/mol 
of the grain growth and the total pre-exponential constant 
K0 = 68.03 ×104 μm2/s were computed and this values is in agree-
ment with the literatures data [20]. Inserting in Equation 15 the 
values of absolute holding temperature was possible to plot the 
curve for the grain growth kinetic. From the Figure 4 is evident 
that more intensive grain growth occurs under temperatures 
after 1200°C. 
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2.2. Grain growth kinetic in presence 
of Zener drag

One of the free input of the model parameter is the Zener 
drag parameter. One value of Zener parameter has been tested 
(Iz = 500) and the same analysis of the previous case (without 
precipitation) hase been performed. The same three temperature, 
from 1000°C to 1200°C has been analyzed and in Fig. 5 the trend 
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line for the three temperatures are plotted against holding time. 
In this case, according to [18], in Equation 16 for the n exponent 
a value of 3 has been tested due the presence of precipitates 
particles during the grain growth phase. In Table 2, values of 
KT and D0

3 (obtained from the trend line) are reported (Fig. 6).

TABLE 2

Partial pre-exponential values KT and grain size D0
3

Simulated temperature
1000°C 1100°C 1200°C

KT [μm/s] 0,2993 1,209 4,306
D0

3 [μm] 58,03 48,8 25,39
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Fig. 6a. Dependence of proportionally constant KT (blue dot), calculated 
from the model, on absolute temperature values and exponential fitting 
curve of KT (dashed orange line)

As in the previous case, without precipitation, KT follows 
an exponential trend as can be seen in Equation 21 that was 
obtained from fitting the model data. 
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In the same manner of the first case, there were determined 
values Q = –183 KJ/mol and K0 = 25,5 ×105 μm3/s for the case 
with Zener drag effect. This data can be used to define the tem-
perature dependence of proportionally K (Fig. 7). 
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Fig. 7. Grain growth kinetics curve in case of Zener drag effect

4. Conclusions

The main conclusion are: 
• The data of the mean radius of austenitic grains, obtained 

from the statistical model of grain growth, can be fitted 
according to Equation 16, with an exponent of n equal to 2 
in the case without particles precipitations. 

• In presence of Zener drag effect, the data can be fitted with n 
equal to 3, according to [18].

• In both cases, the proportionally constant K follows an 
exponential trend, similar to Equation 15, as suggested 
from [18] and more intensive grain growth occur under the 
temperature of 1200°C.
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