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CALCULATION OF CRITICAL TEMPERATURES BY EMPIRICAL FORMULAE

The paper presents formulas used to calculate critical temperatures of structural steels. Equations that allow calculating tem-
peratures Ac1, Ac3, Ms and Bs were elaborated based on the chemical composition of steel. To elaborate the equations the multiple 
regression method was used. Particular attention was paid to the collection of experimental data which was required to calculate 
regression coefficients, including preparation of data for calculation. The empirical data set included more than 500 chemical 
compositions of structural steel and has been prepared based on information available in literature on the subject.

Keywords: CCT diagram, modeling, heat treatment, steel

literature was collected in the paper [11]. Other methods were 
also used for modelling critical temperatures in steels. These 
included artificial neural networks [12-17]. 

The paper presents results of original work related to the 
modelling of critical temperatures in steels using the multiple 
regression method. Formulas presented in the paper [17] were 
modified. This was made possible thanks to supplementing the 
set of empirical data.

2. Data for calculations

In modelling using the multiple regression method it is 
very important to prepare a representative set of empirical data. 
Data preparation was begun with the selection of independent 
variables representing the model. The selection of variables is 
the result of the knowledge of the modelling process. However, 
the availability of data often requires the adoption of necessary 
simplifications. Vectors that contain examples used in modelling 
should include the values of all variables. Simultaneously, the 
values of explanatory variables should evenly cover the entire 
field of the approximated function. An analysis of the range of 
values of independent variables, in which the developed models 
can be used, was carried out. Assessment of the distribution of 
values of explanatory variables was made based on descriptive 
statistics, cluster analysis and histograms made for one or two 
variables. An example of a diagram showing scatterplot matrix 
for the Ac3 temperature model is shown in the Fig. 1. For the 
same model, the Fig. 2 present examples of histograms showing 
the distribution of two elements: carbon and chromium as well 
as carbon and manganese.
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1. Introduction

Empirical formulas that allow calculating critical tempera-
tures in steel based on mass concentrations of elements have 
been presented in scientific publications for many years. To 
elaborate the equations the multiple regression method is used. 
In most cases the general linear form of the model was applied. 
Calculated values of regression coefficients pointed to the influ-
ence of elements on temperature. One of the first models was 
published in 1944 by Payson and Savage [1]. The researchers 
used some results of research by Greninger [2], which concerned 
the influence of carbon on the martensitic transformation start 
temperature Ms and the work by Greninger and Troiano [3]. The 
work also analysed the influence of other elements. The research 
was conducted for seventeen types of steel with a chemical com-
position specifically selected for tests. Payson’s and Savage’s 
equation coefficients were corrected sequentially by Rowland 
and Lyle [4], and Nehrenberg [5]. A similar form of equation was 
proposed two years later by Grange and Stewart [6] who analysed 
the data available at that time. In subsequent years, formulas that 
enabled calculation of other critical temperatures in steels were 
presented a number of times. Among many works on the subject, 
one that is worth mentioning is the publication by Steven and 
Haynes, wherein the effect of chemical composition on the Ms 
temperature and the bainitic transformation start temperature Bs 
was analysed [7]. In his work Andrews published formulas that 
enable calculating the start temperature for the transformation 
from pearlite into austenite (Ac1), and the finish temperature for 
the transformation from ferrite to austenite (Ac3) [8]. The issue of 
modelling critical temperatures in steels was analysed in detail 
in papers [9,10]. Many of the empirical formulas available in 
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Fig. 1. Scatterplot matrix for the Ac3 temperature model

    
a) b)

Fig. 2. Histograms showing the distribution of mass concentration of elements: a) carbon and chromium, b) carbon and manganese
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Based on the conducted analyses the range of mass con-
centrations of elements, for which equation they can be applied, 
was determined. The minimum and maximum values are shown 
in Table 1. Moreover, additional conditions for the sums of con-
centrations of selected elements were defined (Table 2).

TABLE 1

Ranges of mass concentrations of elements 

Range
Mass fractions of elements, %

C Mn Si Cr Ni Mo V Cu
min 0.06 0.13 0.12 0 0 0 0 0
max 0.68 2.04 1.75 2.30 3.85 1.05 0.38 0.38

average 0.33 0.58 0.42 0.65 0.70 0.21 0.03 0.04
SD 0.13 0.37 0.37 0.54 1.02 0.24 0.07 0.07

SD – standard deviation

TABLE 2

Additional conditions for limiting the scope of model application

Mass fractions of elements, %
Mn + Cr Mn + Cr + Ni Cr + Ni Mn + Ni

maximum 3.6 5.6 5.3 4.5

Among other assumptions concerning the variables atten-
tion was paid to the collinearity of explanatory variables. An 
adverse effect of multicollinearity occurs when the explanatory 
variables are intercorrelated. The influence of the explanatory 
variable on the explained variable contains the influence of all 
variables correlated with it. Multicollinearity may cause a false 
assessment of the significance of independent variables of the 
model and change the symbol of the regression coefficient. 
Multicollinearity was assessed based on the correlation matrix 
for the model variables and the Variance Inflation Factor (VIF). 
VIF statistics (1) characterizes the increase in variance caused 
by correlating the analysed explanatory variable with other 
independent variables.

 
2
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VIF

R
  (1)

where:
Ri

2 – determination coefficient for the i -th independent 
variable, which acts as an explained variable in the auxiliary 
equation.

It is assumed that a moderate multicollinearity of explana-
tory variables occurs when the VIF ≥ 5, while in the case of 
VIF ≥ 10 strong multicollinearity is observed. [18] The values 
of the VIFs are summarized in Table 3. No multicollinearity was 
found for independent variables.

TABLE 3

The values of the Variance Inflation Factor

Independent variables
C Mn Si Cr Ni Mo V Cu

VIF 1.13 1.34 1.11 1.26 1.26 1.15 1.15 1.05

3. Method and results

Work on each model was initiated by determining a math-
ematical form. A general form of the equation was accepted:

 0 i i
i

Y a a f X   (2)

where:
 Y – explained variable – transformation temperature;
 a0, a1 .. ai – regression coefficients;
 fi – functions of equation variables;
 X – vector of explanatory variables.

The equations were supplemented with additional compo-
nents that took into account the interactions between explanatory 
variables. The interaction effect occurs when the influence of 
the explanatory variable on the explained variable changes with 
changes in the values of another explanatory variable. Products 
of two independent variables were introduced into the model. 
The estimation of regression coefficients for particular models 
was carried out using the least squares method.

Matching the equation to empirical data was assessed on the 
basis of the determination coefficient (R2). The value of the de-
termination coefficient allows estimating what part of variability 
of the dependent variable is explained by independent variables. 
Changes in the values of the determination coefficient also depend 
on the number of independent variables. Adding the variable to 
the model increases the value of R2 even if the explanatory vari-
able is useless in the model. Therefore, to assess the significance 
of explanatory variables that were added or removed from the 
equation, the value of the adjusted determination coefficient 
was used. The adjusted R2 coefficient is carried out due to the 
number of degrees of freedom, i.e. the number of observations 
reduced by the number of independent variables. The adjusted 
determination coefficient allows comparing multiple regression 
models with different numbers of explanatory variables that have 
been developed for the same empirical data. The lower value of 
the adjusted coefficient from the R2 value suggests that the model 
may contain an insignificant explanatory variable.

The significance of regression coefficients for the model 
was tested by verifying hypotheses concerning individual ai 
coefficients in the form of a null hypothesis (H0:ai = 0), and an 
alternative hypothesis (Ha:ai ≠ 0). The Student’s t-distribution was 
used to verify the hypotheses. The testing statistics was calculated 
as the quotient of the regression coefficient and the standard error 
for this coefficient. The level of significance was α = 0.05. When 
the null hypothesis was rejected, the regression coefficient for the 
explanatory variable was considered statistically different from 
zero, assuming that the independent variable is statistically signifi-
cant and influences the explained variable. The null hypothesis was 
rejected when the p-value, which was the calculated significance 
level for the testing statistics t, reached a lower value than 0.05. 
Insignificant variables were removed from the equation, and then 
the regression coefficients were calculated once more.

Values of statistics for temperature models: Ac1, Ac3, Bs and 
Ms are presented in Table 4. Table 4 shows the final part of the 
analysis after removing the insignificant variables.
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TABLE 4

Values of statistics used to evaluate the significance 
of regression coefficients 

Variable Int. C Mn Si Cr Ni Mo V Cu
Model Ac1

RC 741.9 –29.1 –14.0 12.6 15.9 –16.8 –16.2 45.2 36.3
Standard 

error 3.5 5.7 2.2 2.0 1.4 0.8 3.1 11.3 9.8

t Stat 212.3 –5.1 –6.4 6.4 11.0 –21.9 –5.2 4.0 3.7
p–value 0 5E–7 4E–10 4E–10 2E–25 7E–75 2E–7 8E–5 2E–4
Model Ac3

RC 924.7 –219.4* –6.9 39.2 – –15.9 13.4 97.0 –
Standard 

error 5.2 7.3 2.5 2.3 – 0.9 3.5 13.6 –

t Stat 176.4 –29.9 –2.8 16.7 – –18.1 3.8 7.1 –
p–value 0 3E–111 0.006 2E–49 – 4E–56 0.0001 4E–12 –
Model Bs

RC 770.9 –231.5 –68.7 –23.3 –58.5 –30.8 –55.4 –41.3 –
Standard 

error 6.9 10.6 4.1 3.6 2.6 1.4 5.4 19.8 –

t Stat 112.4 –21.9 –16.8 –6.5 –22.3 –22.3 –10.3 –2.1 –
p–value 0 1.1E–7 6E–50 2E–10 2E–75 2E–75 1E–22 0.04 –
Model Ms

RC 541.2 –401.2 –35.6 –10.5 –14.2 –18.1 –17.1 – –
Standard 

error 4.7 7.6 2.9 2.4 1.8 0.9 3.4 – –

t Stat 115.8 –52.6 –12.3 –4.4 –7.7 –18.7 –5.01 – –
p–value 0 8E–205 2E–30 1E–05 5E–14 1E–59 7E–7 – –

* C ; Int. – Intercept; RC – regression coeffi cient

The statistical significance of the regression model was 
examined using the F test. The testing statistic with the F-Fisher-
Snedecor distribution was calculated as the quotient of the mean 
value of the regression squares, and the mean square error taking 
into account the degrees of freedom. The null and alternative 
hypotheses were verified. Accepting the null hypothesis means 
that there is no dependence between the set of explanatory vari-
ables and the explained variable. The alternative hypothesis for 
the F test that confirmed the statistical significance of at least 
one regression coefficient was assumed when the p-value was 
lower than 0.05. Table 5 summarizes the statistics for the F test 
supplemented with, among others, the values of the standard er-
ror, the correlation coefficient (R), the determination coefficient 
R2 and the adjusted determination coefficient.

TABLE 5

Values of statistics used to evaluate the significance 
of the developed models 

Model
Ac1 Ac3 Bs Ms

R 0.78 0.86 0.87 0.93
R2 0.61 0.75 0.75 0.87

Adjusted R2 0.61 0.75 0.75 0.86
Standard error 15.55 17.80 27.53 19.99
Observations 500 484 476 502

Signifi cance F 1.14E–96 3E–140 9E–138 1E–212

The elaborated models were also assessed on the basis of: 
the mean absolute error, the standard error deviation, and the 
standard deviation quotient of the calculation error, as well as the 
standard deviation of the dependent variable value. The standard 
deviation quotient allows referring the error value of the model 
to the scope of changes of the dependent variable. The „ideal“ 
value for this statistic is 0.

Table 6 shows the following values: the mean absolute error, 
the standard error deviation, and the standard deviation quotients 
for error and empirical values of the dependent variable.

TABLE 6

Values of statistics used to evaluate the quality 
of the developed models

Mean absolute 
error, °C

Standard deviation 
of the error, °C

Ratio of standard 
deviations

Ac1 12.4 9.2 0.36
Ac3 14.1 10.7 0.30
Bs 21.2 17.2 0.31
Ms 14.8 13.3 0.24

When applying the presented procedure, equations that 
explain the dependence between the chemical composition of 
steel and transformation temperatures were elaborated: Ac1, Ac3, 
Bs and Ms. Critical temperatures models are shown in equations 
(3)-(6).

 1 742 29 14 13
16 17 16 45 36

Ac C Mn Si
Cr Ni Mo V Cu

  (3)

 3 925 219 7
39 16 13 97

Ac C Mn
Si Ni Mo V

  (4)

 
771 231.5 69 23

58,5 31 55 41
sB C Mn Si

Cr Ni Mo V
  (5)

 
541 401 36
10,5 14 18 17

sM C Mn
Si Cr Ni Mo

  (6)

For critical temperature models the following scatter plots 
for dependent variable values that were experimental and cal-
culated using equations (3-6) were made. The results are shown 
in Fig. 3.

4. Summary

The paper presents equations describing the dependence 
between the chemical composition of steel and the start tem-
perature for the transformation from pearlite into austenite (Ac1), 
the finish temperature for the transformation from ferrite into 
austenite (Ac3), the bainitic transformation start temperature 
(Bs), and the martensitic transformation start temperature (Ms). 

The theory of correlation and regression is a useful tool to 
determine the degree of connection of variables in a model. It 
allows answering the question whether there is a dependence 
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between variables and whether it is close. Moreover, the equa-
tions can be easily spread and widely used, as well as verified 
by other research results. A certain piece of information on the 
dependence between the explanatory variables and the explained 
variable is visible in the form of values of coefficients of the 
regression equation. The value of the regression coefficient 
may not always be interpreted as the force of influence of an 
element on the value of transformation temperature. It should be 
remembered that there is variability in the explanatory variable 
and the values of other independent variables.

The set of empirical data has essential meaning for the 
quality of the developed models. The set was used to calculate 

the regression coefficients. The presented equations can be used 
only in the range of concentrations of alloying elements shown in 
the Table 1. Simultaneously, the conditions set out in the Table 2 
should be complied with.

The multiple regression and logistic regression methods 
were also used to develop other models that describe the trans-
formation temperatures as a function of the cooling rate, hard-
ness of steel and volume fractions of ferrite, pearlite, bainite and 
martensite in the microstructure of steel. The results are shown 
in papers [19-21].

Fig. 3. Comparison of the experimental temperatures with values calculated using the regression model
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