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Dynamic Stability of the Periodic and Aperiodic Structures  
of the Bernoulli-Euler Beams

The study analyzed the influence of periodic and aperiodic stiffness distribution for the four-element Bernoulli-Euler beam 
on the first two eigenfrequencies and the dynamic stability of the system. The influence of increasing the ratio of cross-sections of 
the analyzed elements was also analyzed. Significant differences were found in eigenfrequencies and dynamic stability. Using the 
variational Hamilton principle, the equation of motion was derived, on the basis of which the values of the eigenfrequencies were 
determined, and the transformation into the form of the Mathieu equation made it possible to determine the dynamic stability for 
the analyzed structures.
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1. Introduction

Columns are widely used in structures and mechanical de-
vices, moreover, many design problems can be traced back to the 
analysis of basic elements such as columns. The analysis of the 
column’s own vibrations and the analysis of the vibrations result-
ing from the action of a relatively small force changing in time 
allow to determine for which material and geometric parameters 
the system may become unstable, and thus be destroyed. It can 
be assumed that the construction of the column from elements 
with irregular order will significantly affect the phenomenon of 
parametric resonance, which may allow for the design of safer 
structures. In addition, adding elements to the existing column 
that change its geometry will affect its natural frequencies and 
dynamic stability.

The well-known phenomenon of parametric resonance can 
be observed in a wide variety of optical, mechanical, electri-
cal, and physical systems [1-5]. Parametric resonance can be 
observed in mechanical systems such as, for example, by ap-
plying an axial load to a cantilever beam [3,6], or it can even 
result from changes in stiffness [7]. Parametric resonance can 
be analyzed by reducing the equation of motion of the system 
to the form of the Mathieu equation [8-13]. Periodic solutions 
of the Mathieu equation allow to designate areas of stable and 

unstable solutions [14]. The paper [15] presents the results of 
the homogeneous Mathieu equation, where the dependencies of 
the oscillation data on the ratio of the coefficients were found. 
These dependencies can be used to approximate the solutions of 
the Mathieu equation without integration. In the paper [12] the 
dynamic stability of a simply supported beam with additional 
discrete elements such as a concentrated mass, an undamped har-
monic oscillator and an elastic spring was investigated. Dynamic 
stability studies were also carried out using the Mathieu equation 
for much more complex systems, such as the truck crane [9]. 
In the works [16,17], the dynamic stability of a beam built of 
materials of different stiffness was investigated. The dynamic 
stability of micro and nanobeams was also investigated [18-20]. 
In [21] the material with axially continuous gradual variation 
properties was considered. So far, research has been carried out 
on the dynamic stability of plates with variable stiffness [22], 
but the influence of variable stiffness with aperiodic distribution 
in the beam is unknown.

The work will investigate the impact of the stiffness distri-
bution in the Bernoulli-Euler beam on the eigenfrequency values 
and the dynamic stability of the analyzed structures. The variable 
stiffness of the column results from the multiple step change of 
the geometrical and material parameters of its individual seg-
ments. It is assumed that different types of stiffness distribution 
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in a column (periodic or aperiodic) with given geometric and 
material properties will significantly affect the values of the 
natural frequencies of the analyzed columns, as well as, in the 
case of a force variable in time, on their dynamic stability.

Understanding the behavior of multi-segment Bernoulli-Eu-
ler columns, where the distribution of the stiffness in the column 
is periodic or aperiodic may be very important in the design of 
machines and devices where such columns are used (e.g. bridges, 
storage halls). Knowledge about the influence of the distribution 
of various types of segments on the frequency of natural vibra-
tions and dynamic stability will allow to avoid the phenomenon 
of parametric resonance and thus increase the safety of users.

2. Mathematical background

In this work, a multi-segment Bernoulli-Euler column, 
freely supported, loaded by a longitudinal force was considered. 
The problem of dynamic stability was solved using the mode 
summation method. The applied research procedure allow the 
dynamics of the tested system to be described with the use 
of the Mathieu equation. The influence of stiffness distribu-
tion in the Bernoulli-Euler column on the first and second 
eigenfrequency and the dynamic stability of the system was 
investigated. 

Fig. 1 shows a Bernoulli-Euler column, hinged at its ends, 
loaded with an axial compressive force as described by the rela-
tion P(t) = P0 + S cosvt , where P0 is a constant component of 
the load, S is a variable component of the load, v is the frequency 
of the exciting force, and t determines the time. The material 
property of the beam is the Young’s modulus Ei, section mo-
ment of inertia Ji, cross-sectional area Ai and the density of the 
material ϱi.

Fig. 1. Multi-segment Bernoulli-Euler column loaded with an axial 
compressive force that changes cyclically

The problem of transverse vibrations of multi-segment 
Bernoulli-Euler column was solved by formulating the boundary 
problem using the Hamilton variational principle
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The variation of kinetic energy was determined using the 
alternation of the integration operation with respect to time 
and space variables and using integration by parts. For t = t1 
and t = t2 the value of the variation δWi (x, t)  is equal to zero, 
substituting we get
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Potential energy of the system V = V1 + V2 was defined 
as the sum of the bending spring energy for each i-th segment
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and energy from an external load

 
    2

2
1 0

,1 
2

lN
i

i

W x t
V P t dx

x

 
    
   	 (5)

Their variations are respectively
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The equations of motion of the column transverse vibrations 
was determined as
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The solution of equation (8) is predicted as a series of 
eigenfunctions
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where Wi,n(x) is the n-th free vibration form of the i segment, 
and Ti,n(t ) is an unknown function of time.

For the first form of vibrations, displacement Wi(x,t ) is 
written as a product of functions with variables separated by 
time t and coordinate x
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For the system shown in Fig. 1, the geometric boundary 
conditions after separating the variables are

 W1(0) = WN (l ) = 0	 (12)

The natural boundary conditions after separating the vari-
ables are determined

 

 2

2 0N
i i

d W l
E J

dx
  	 (13)

 

 2
1
2

0
0i i

d W
E J

dx
  	 (14)

The conditions of continuity between regions of variable 
stiffness were defined as

 Wi (x) = Wi+1(x)	 (15)
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The general solution to the displacement equation (11) is 
a function
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where
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By inserting solution (19) and its derivatives into equations 
(12)-(18), a homogeneous system of equations M was obtained 
with respect to the unknown constants Ci, j. This matrix system is 
written as [M](ω)C = 0, where [M](ω)C = [apq] ; [p,q] = (1 – 4), 
and C = [Ci]T ; i = 1 – N ; j = 1 – 4.

In the case when the determinant of the matrix of coef-
ficients is equal to zero with the constants Ci, the system has 
a non-trivial solution. Equation (detM(ω) = 0) allows to deter-
mine the dependence of the eigenfrequencies of the system ωi 
from the load P and determine the critical load value Pk.

To expand eigenfunctions in series (9) their orthogonality is 
assumed. Equation (11) after separating the variables for the n-th 
and m-th eigenfunctions and taking into account the boundary 
conditions (12)-(14) and simplifying, we obtained
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Because ωi, m ≠ ωi, n, when m ≠ n, then
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The orthogonality condition sought is determined by the 
formula (23).

Substituting equation (9) into equation (11) and taking into 
account the orthogonality condition and substituting τ = vt, the 
equation of motion in the form of the Mathieu equation
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and was obtained as
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The numerical values of the parameters a and b each time 
decide whether the solution lies in a stable or unstable area.

3. Research

A binary structure will be used as an example of a periodic 
structure [23]. For the initial value a0 = XY, the successive steps 
are described by the formula (28), where the superscript denotes 
the number of times the sequence is repeated, and the parameters 
X and Y symbolize a given type of Bernoulli-Euler segment.

 an = (a0)n	 (28)

The Thue-Morse chain [24-28] was used as the aperiodic 
structure. The Thue-Morse chain for the initial values 
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is formed based on the substitution rule
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Based on the above rules, subsequent types of beam distri-
bution in the column are obtained.

The beams with periodic (binary – XYXY) and aperiodic 
(Thue-Morse – XYYX) stiffness distributions were analyzed. 
As can be seen, these are simple four-element structures with 
the same number of X and Y elements. The same mass. The 
length of the beam was assumed for the calculations, equal to 
3 m. The length of the column segments was equal to the fourth 
part of its length. The entire column was made of a homogene-
ous material – steel (Young’s modulus E = 2.1·1011 Pa, density 
ρ = 7.86·103 kg·m–3). The static part and the variable part of the 
load were 5% of the critical load PC = 9.33 ·107 N. The cross-
section of the segment X was a square with a side of 0.3 m with 
an area AX. The cross-section of the segment Y was a square 
whose cross-sectional area AY was changed from the value equal 
to the area AX to its four times.

Fig. 2 and Fig. 3 show the effect of increasing the cross-sec-
tion AY in relation to AX on the first and second eigenfrequencies, 
respectively For the XYXY structure, the first eigenfrequency 
was smaller than for the XYYX structure over the entire analyzed 
range. For the ratio of the cross-sectional area of sections AY to 
AX equal to 1.9, there was a maximum of the first eigenfrequency 
of 513.26 rad / s (XYXY structure). The maximum in the XYYX 
structure occurred for the area Y to X ratio of 2.8 and had a first 
natural frequency value of 596.36 rad / s. Contrary to the value 
of the first eigenfrequency, the XYXY periodic structure was 
characterized by higher values of the second eigenfrequency. 

For the Y

X

A
A

  cross-section ratio, both structures had maximum 

values of the second eigenfrequency, respectively for the XYXY 

structure Y

X

A
A

  = 2.2 and ω2 = 2109.33 rad/s and for the XYXY 

structure it was Y

X

A
A

  = 1.9 and ω2 = 2092.69 rad/s.

For both analyzed structures (Fig 4. And Fig. 5), there 
was an increase in dynamic stability with an increase in the AY 
cross-section, however, the XYYX structure showed a much 
higher dynamic stability than the XYXY structure. The studies 
have shown a significant impact of the stiffness distribution in 
the column on the natural frequency and dynamic stability for 
relatively simple structures.

4. Conclusions

The paper analyzes the impact of the stiffness distribution 
of the four-element Bernoulli-Euler beam for the periodic and 
aperiodic (Thue-Morse) systems on the first and second natural 
frequencies. Using the summation method and transforming the 
determined equations of motion into the form of the Mathieu 
equation, the change in dynamic stability of the examined struc-
tures was determined. It should be noted that the periodic struc-
ture showed higher values of the first eigenfrequency and lower 
values of the second eigenfrequency than the aperiodic structure. 

Fig. 2. The first eigenfrequency for binary (XYXY) and Thue-Morse 
(XYYX) structures depending on the ratio of the cross-sectional areas 
of segments Y to X

Fig. 3. The second eigenfrequency for binary (XYXY) and Thue-Morse 
(XYYX) structures depending on the ratio of the cross-sectional areas 
of segments Y to X
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All the analyzed eigenvalues were characterized by the maximum 
occurrence in the given range of changes in the AY cross-section. 

As the ratio of Y

X

A
A

  cross-sections increased in both structures, 

the dynamic stability increased, although the XYYX structure 
was much more stable.
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Fig. 4. Influence of the ratio of the cross-sectional areas of segments Y 
to X on the parameters a and b of the Mathieu equation for the binary 
structure (XYXY)

Fig. 5. Influence of the ratio of the cross-sectional areas of segments Y 
to X on the parameters a and b of the Mathieu equation for the Thue-
Morse structure (XYYX)
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