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THE METHOD OF INOCULATION OF HIGH-QUALITY GREY CAST IRON INTENDED FOR MASSIVE CASTINGS

FOR BOTTOM AND DISTANCE PLATES AS WELL COUNTERWEIGHTS MANUFACTURED
AS VERTICAL CASTINGS

The technology of producing castings of high-quality inoculated cast iron with flake graphite particles in the structure is a
combination of the melting and inoculation process. Maintaining the stability of the strength and microstructure parameters of
this cast iron is the goal of a series of studies on the control of graphitization and austenitic inoculation (increasing the number of
primary austenite dendrites), and which affects the type of metal matrix in the structure. The ability to graphitize the molten alloy
decreases with its holding in the melting furnace more than an hour. The tendency to crystallize large dendritic austenite grains and
segregation of elements such as Si, Ni and Cu reduce the ductility properties of this cast iron. The austenite inoculation process
may introduce a larger number of primary austenite grains into the structure, affecting the even distribution of graphite and metal
matrix precipitation in the structure. Known inoculation effects the interaction (in low mass) of additives: Sr, Ca, Ba, Ce, La, pro-
duces MC, carbide). Addition of Fe in the inoculant influences the number and shape of austenite dendrites. Hybrid modification
combines the effects of these two factors. The introduction of nucleation sites for the graphite eutectics and primary austenite grains
result in the stabilization of the cast iron microstructure and an increase in mechanical properties. The obtained test results set the

direction for further research in this area in relation to the production of heavy plate castings in vertical and horizontal pouring.
Keywords: High-quality cast iron; heavy castings; massive casting; graphitizing inoculation; hybrid inoculation

1. Introduction

The article is the result of a research project in Foundry
Krakodlew S.A. in Krakow (Poland). The project concerned the
development of a technology for casting massive plate castings
in a vertical arrangement. These castings weigh up to 80 tons.
In ingot moulds, during operation, changes in the structure of
the cast iron may occur, which may lead to cracking of these
castings. That problems are not encountered when using another
type of heavy (or massive) castings, such as counterweights,
the weight of which reaches 30 tons. The casting crystallization
should be carried out in such a way as to increase its resistance
to thermal fatigue and cracking under the influence of thermal
stresses. The above-mentioned issues are particularly relevant to
heavy bottom plates. Due to technical and technological consid-
erations, gray modified cast iron with flake graphite still has the
advantages that characterize this cast iron to be used for bottom
plates. Examples of that plates produced in Krakodlew S.A.

foundry is shown in Fig. 1. Therefore, high-quality inoculated
gray cast iron with flake graphite was selected for the tests. In
this case, pay attention to even distribution of structural phases,
such as graphite and metal matrix, in the casting volume. The
appearance of at least one type of problem, e.g. segregation of
elements, graphite flotation, variable proportion of perlite and
ferrite and shrinkage porosity always leads to a very large number
of defective castings with reduced service life and large financial
losses of the foundry.

Currently, every producer of massive castings wants to
resign from machining, which in this case constitutes high costs
in the technology of obtaining a finished product. Currently,
there is no known technology for obtaining this type of castings
without mechanical processing. However, it seems that a signifi-
cant reduction in processing time could be obtained if foundries
vertical positioned heavy plates. At the same time, it should be
realized that this method of casting may result in difficulties in
keeping the mass or the shape of the casting (the phenomenon
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b)

Fig. 1. Examples of bottom plates — weight range: up to 80 tons (a) and counterweight — weight range: up to 30 tons (b) produced in Foundry

Krakodlew S.A.

of deformation of the casting surface). It can be assumed that the
above issues apply not only to the material which is cast iron [1-4],
but also cast steel [5-11] and other groups of materials, including
types of alloy cast iron [4,12-15], to be used for heavy castings.
Unfortunately, there is a small number of articles on that castings,
which mainly refer to ductile iron [16-19] and the methods of
their production in a vertical arrangement in a casting mold [16].
When producing castings, it should be mentioned that porosities
can significantly reduce strength and utility properties of castings.
Fig. 2 shows photos of the porosity that may appear in cast iron.

2. Aspect of inoculation of cast iron intended
for heavy castings

In order to obtain a cast without defects, the inoculation
procedure must be carried out in a proper and appropriate way.
The mechanism of cast iron inoculation is closely related to the
process of nucleation and eutectic growth, and there are several
hypotheses in this regard. According to one, the introduction
of inoculants into the molten alloy causes the formation of
heterogeneous-endogenous graphite nuclei in the form of oxides

(S10,), nitrides, sulfides or carbides. Proponents of this hypoth-
esis believe that the procedure of inoculation cast iron is actually
a process of deoxidizing the bath with silicon. This hypothesis
is contradicted by the fact that ferrosilicon without Ca and Al
admixtures does not give the inoculation effect. The most prob-
able hypothesis is B. Lux’s theory, which is presented in Fig.3a.
The instability of carbides as graphite nucleation sites under the
influence of oxygen and sulfur contained in molten cast iron is
shown in Fig. 3b. The scheme of gray cast iron inoculation is
shown in Fig. 4.

3. Phase composition of industrial inoculants

Fig. 5 shows the results of tests of industrial inoculants of
their phase composition and distribution. It can be seen that iron
exists only in the form of FeSi, phase and is a separate phase
in the inoculant. It cannot be ruled out that the FeSi, phase may
be a suitable substrate for the nucleation of primary austenite
dendrites. Moreover, elements such as Sr, Al, Ba can also form
substrates for heterogeneous nucleation of austenitic grains in
the molten alloy.

Fig. 2. Types of porosity defects in the microstructure of a gray cast iron casting: interdendritic porosity — a), shrinkage porosity —b), gas porosity —c)
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Fig. 3. Diagram of the formation of carbides as graphite nucleation sites (a) and the mechanism of their instability during the reaction with sulfur

and oxygen (b)
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Fig. 4. Scheme of the inoculation procedure: introduction of a inoculant containing Ca, Ba, Sr, Ce, Al, Bi (a); formation of deoxygenated and
desulfurized areas, e.g. CaO and CaS (b); formation of MC, particles (nucleation site) (CaC,, BaC,)

(2) Ba - Al - Sr - Si

Fig. 5. Assessment of the phase composition of a typical industrial inoculant with additives: Sr, Ba, Al. using a scanning microscope with EDS.
Chemical composition of phases (wt%): (1) 52.39% Si, residual% Fe; (2) 9.04% Al, 1.27% Ca, 40.38% Ba, 3.83% Sr, residual Si; (3) 34.13%

Ca, 2.10% Ba, 20.59% Sr, residual Si; (4) 100% Si

In the industrial practice of iron foundry, the inoculation
effect is considered mainly as the influence on the graphite eu-
tectic grains, while its influence on the crystallization of austenite
dendrites (primary austenite grains) is largely neglected. It was

proved in [3,4] that the inoculation procedure affects not only
the grains of graphite eutectics, but also the grains of primary
austenite. Fig. 6 shows the correlation between the number of
primary austenite grains and the number of graphite eutectic
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(a) (b)
Fig. 6. Macrostructure [3,4] of rolls (diameter 30 mm) of gray cast iron with flake graphite after heat treatment using the DAAS method: before
inoculation (a, b); after inoculation (c, d); eutectic grains (a, ¢); primary austenite grains (b, d)

grains in gray cast iron before and after inoculation. Therefore,
in the further part of the work, we will treat the inoculation as a
procedure influencing the number of eutectic grains of graphite
and primary austenite grains.

The most common method is to introduce the inoculant into
the ladle and apply a secondary inoculation when pouring the
mold. Mostly, foundries use high-melting inoculants containing
75%S:i in ferrosilicon. They crystallize in the temperature range
from 1221°C to 1315°C and can be introduced at the temperature
of the molten alloy of about 1350°C. Less frequently used are
low-melting inoculants which composition is based on 50%Si.
These crystallize in the temperature range from 1210°C to
1221°C. Due to the low pouring temperature in the case of the
production of massive castings, the potentially better results
should be obtained by using low-melting inoculants in the case
of introducing its to the metal stream when pouring the mold.
The amount of the inoculants used in the metallurgical process
ranges from 0.2 to 0.7% of the weight of melted cast iron. The
equilibrium phase diagram [20] of Fe-Si alloys (Fig. 7) shows
that FeSi alloys with a composition of 70% and 50%Si have a
melting point of 1220°C and 1350°C, respectively. The presented
research on the optimization of the physicochemical state of
molten alloy was aimed at increasing the number of graphite
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Fig. 7. Equilibrium phase diagram of Fe-Si alloys with the designation
of the high-melting FeSi75 and low-melting FeSi50 inoculant

(d)

eutectic grains per unit area and thus improving the mechanical
and functional properties of castings.

Properly carried out inoculation can contribute to the
elimination of defects in the production of heavy castings. The
studies presented below were aimed at developing a 3-stage
inoculation technology, the scheme of which is presented in
TABLE 1 and Fig. 8.

The research presented in the article is part of the stage 2
research. The research was carried out in Foundry Krakodlew
S.A. to develop a special inoculation method dedicated to mas-
sive castings, including large-size plates produced in a vertical
position. This method using the cored wire method consisted
in introducing a steel tube with a graphitizing inoculant and
the steel tube itself. In order to simplify the tests in laboratory
conditions, the inoculation procedure was carried out by intro-
ducing a graphitizing inoculant together with a steel bell. The
conducted research has shown that this method of treatment —
hybrid inoculation, is more effective in reducing the undesirable
D-type interdendritic graphite (according to the PN-EN ISO
945 standard) than in the standard inoculation. The research
and analysis of the results presented in the article allowed for
the development of an innovative method of hybrid inoculation
of high-quality cast iron with flake graphite dedicated to the
technology of production massive (heavy) castings.

Stage [

Stage II Stage III

Fig. 8. Scheme of inoculation applied in Foundry Krakodlew S.A.: 1
—stage (when pouring from the furnace into the ladle), I — stage (intro-
ducing wire steel with and without a graphitizing inoculant using cored
wire method), III — stage (on a stream of metal when pouring molds)



TABLE 1
Scheme of the 3-stage inoculation procedure
Inoculation
Stage 1 Stage 11 Stage 111
in the ladle with the cored wire when pouring the
method mold

4. Experimental

At the beginning, it was checked whether the change of the
forming method (from horizontal to vertical) could affect the
casting defects. For this purpose, an earlier study carried out in
the Krakodlew S.A. foundry, in which slabs of ductile iron was
produced, was used. Information on these studies was published
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in [21]. The research published there showed a large difference
between the crystallization temperatures of the molten alloy
depending on the location of the thermocouples in the casting
and defects such as porosity were observed.

To control the technological process of casting the castings,
computer simulation was used with the use of ProCAST software
for the chemical compositions of cast iron presented in TABLE 2.
Fig. 9 show the results of a computer simulation with the Pro-
CAST software for a board with dimensions; 100x500x500 mm.

The next step was to make a laboratory melt using the
molten alloy inoculation method with a steel bell. In the crucible
of a 15 kg medium frequency induction furnace, the cast iron
charge was melted to a liquid melt state. After superheating the
melt bath to 1500°C (T1), the molten alloy was held for 3 minutes
and then the temperature was lowered to 1400°C (T2). At this
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Fig. 9. The simulation results showing the areas of shrinkage porosity in the reference cast iron (a, b, ¢) and the inoculated cast iron (d, e, f).
Chemical compositions assigned in Table 2; No. 1 (a, d), No. 2 (b, ¢), No. 3 (c, f)
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TABLE 2 TABLE 3
Chemical composition of inoculated cast iron with flake graphite Technological parameters of the performed laboratory melts
Chemical composition No 1 No 2 No 3 Melt No | Inoculant | Chemical composition of cast iron, % mas.
C 3.70 3.70 3.40 Inolate
Si 2.00 1.70 1.66 B1 mass % © P S Si | Mn | Cr | Cu
Mn 0.6-1.0 0.6-1.0 0.6-1.0 0.35 3.72 | 0.02 | 0.06 | 1.98 | 0.68 | 0.17 | 0.19
Cr 0.2 0.2 0.2 Superseed
Cu t0 0.6 to 0.6 t0 0.6 B2 mass % © P S Si | Mn | Cr | Cu
Sn 0.1 0.1 0.1 0.35 3.7310.02 | 0.06 | 2.05 | 0.70 | 0.17 | 0.19
Ni 0.2 0.2 0.2 Zircinoc
S 0.04-0.07 0.04-0.07 0.04-0,07 B3 mass % © P S Si | Mn | Cr | Cu
P 0.2 0.2 0.2 0.5 3.6910.03|0.05|2.01]0.67]|0.18| 0.20
Eutectic saturation S.=1.02 S.=0,99 S.=0,91 Zircinoc
Carbon Equivalent CE=433 | CE=4,25 | CE=3.93 B4 mass % C P S Si | Mn | Cr | Cu
0.35 3.64 1 0.04 | 0.06 | 2.09 | 0.60 | 0.23 | 0.27
. . . . X Steel bell mass — 100g
temperature, a inoculation procedure was carried out using anin- | gyerheating temperature (T1) 1500°C
dustrially selected inoculants and to modification of the primary Inoculation temperature (T2) 1400°C

structure (grains of primary austenite dendrites) using a 100 g
steel bell. These processes took place in a crucible located in a
switched-on induction furnace. The casting moulds were standard
rollers with a diameter of @30%270 mm and a “Y” type ingot. A
summary of data for individual melts is presented in TABLE 3.

The course of curves of cooling and crystallisation of in-
oculated cast iron is shown in Fig. 10. That curves are character-
istic for eutectic cast iron chemical composition. The degree of
subcooling T (defined as the difference between the equilibrium
crystallization temperature of graphite eutectic and the minimum
temperature at the beginning of cast iron crystallization) is
for, respectively: B1 = 18.63°C, B2 = 18.27°C, B3 = 10.25°C,
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B4 =15.83°C. It is worth noting that the decrease in the degree
of subcooling T for the inoculated cast iron in relation to the
initial state is insignificant.

5. Results and discussion

Figures 11-14 show the microstructures in the investigated
castings made during experimental melting carried out under
semi-industrial conditions at the Experimental Foundry in the
Foundry Department of the AGH University of Science and Tech-
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Fig. 10. Cooling and crystallization of inoculated grey cast iron for the melts: a) B1, b) B2, ¢) B3, d) B4
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Fig. 11. Microstructure of cast iron (melt No 1B) after inoculation: ,,Y*“-type ingot — a,b), roll casting with a diameter of @30 mm — c,d); nital
etched — b,d) not etched — a,c)

Fig. 12. Microstructure of cast iron (melt No 2B) after inoculation: ,,Y*“-type ingot — a,b), roll casting with a diameter of @30 mm — c,d); nital
etched — b,d) not etched — a,c)
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Fig. 13. Microstructure of cast iron (melt No 3B) after inoculation: ,,Y“-type ingot — a,b), roll casting with a diameter of @30 mm — c,d); nital
etched — b,d) not etched — a,c)
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Fig. 14. Microstructure of cast iron (melt No 1B) after inoculation: ,,Y“-type ingot — a,b), roll casting with a diameter of @30 mm — c,d); nital
etched — b,d) not etched — a,c)
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TABLE 4
Results of the metallographic analysis
No melt Cast N,, em™ %A %B %D A-Ljpax Class B-L,,ax Class D-Lpax Class
B1 Y 450 50 20 30 319 3 461 3 53 6
330 357 55 15 30 367 3 724 2 67 5/6
B2 Y 440 50 20 30 453 3 643 2 135 4/5
930 324 40 30 30 376 3 672 2 98 5
B3 Y 324 80 20 0 288 3 418 3 - -
230 232 87 10 3 319 3 448 3 75 5
B4 Y 73 386 3 20 569 2 90 7 283 5
230 87 344 3 10 636 2 102 3 253 5
N, — number of eutectic grains; Lmax — maximum graphite dimensions,
% A, B, D — percentage share of particular types of graphite distribution, Y — results obtained in “Y”-type ingot casting,
class — graphite size class according to PN-EN-ISO 945-1, @30 — results obtained in roller casting of @30 mm diameter

nology. During the melting of cast iron, various inoculants were
checked in terms of their influence on the uniform distribution
of flake graphite obtained during research melts 1B-4B. The mi-
crostructure parameters are summarised in TABLE 4. The study
shows that superheating the metal at 1500°C for three minutes
gives much better results in terms of graphite homogeneity com-
pared to the superheating temperature of 1450°C. Superheating
of the metal contributes to obtaining a physico-chemical state
of the molten alloy, providing a more favorable microstructure
from the point of view of the separation of graphite flakes, ap-
propriate distribution and size.

The study shows that the inoculation of the primary struc-
ture (austenite dendrite grains) and the inoculation of the graphite
eutectic, contributed to an increase in the homogeneity of the
microstructure of the cast iron, as shown by the results in terms
of the shape and size of the flake graphite particles. Analysis of
the curves of crystallization and cooling of cast iron and their first
derivatives indicates that the procedure of eutectic and double
inoculation (concerning austenite dendrite grains and graphite
eutectic) increases the temperature of the end of cast iron crystal-
lization. This effect was observed in all cases and is accompanied
by a significant reduction in the presence of the so-called “over-
cooled” areas, where graphite nucleates to form significantly
fragmented and undesirable in the microstructure of cast iron
interdendritic graphite type D according to ISO 945-2010. Com-
parison of the modifier effects, gave the most favorable results
when the Zircinoc type inoculant was used. In combination with
a double inoculation (i.e. a combination of Zircinoc modifier +
steel “bell”), it resulted in a significant decrease in the volume
proportion of D-type graphite, down to a level of 5% in standard
casting shafts. At the same time, the degree of undercooling has
the lowest value and the highest solidus temperature. Analysis of
the effect of different doses of Zircinoc inoculant (together with
the addition of “‘steel bell”) indicates that the higher the inoculant
dose, the proportion of undesirable D-type graphite separation
in the microstructure decreases. The lowest value was obtained
for cast iron with 0.5% Zircinoc. However, the use of 0.35%
inoculant resulted in only a slight increase in the proportion of
D-type graphite release, to 5%.

6. Conclusions

The use of a inoculant with a high capacity to produce large
amounts of graphite eutectic grains in combination with steel
introduced by the inoculation process results in a significant
reduction of shrinkage type defects when pouring vertically
oriented plate moulds.

From high melting graphitising inoculants based on FeSi75
(their melting temperature in the bath is 1350°C) such as; Inolate,
Superseed or Zircinoc, as, the best effect of the so called primary
modification was obtained when Zircinoc and then Superseed
were introduced into the bath at their consumption of 0.35% to
the mass of molten alloy.

A significant decrease in the volume proportion of D-type
graphite, up to a level of 5% in the microstructure, was observed
in favour of uniformly distributed A-type graphite in the metal
matrix. From this case, it is concluded that during the dissolu-
tion of the steel bell in the liquid melt, steel (iron) crystalization
sites are obtained for the nucleation of the hypoeutectic austenite
dendrite grains, which in both cases have the same Al-type
crystal lattice.
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