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Crystal lattiCe rotations induCed by shear banding in fCC Metals deforMed  
at high strain rates

In this paper, the microstructural and texture changes in polycrystalline Cuzn30 alloy, copper, and aa1050 aluminium alloy 
have been studied to describe the crystal lattice rotation during shear bands formation. the hat-shaped specimens were deformed 
using a drop-hammer at the strain rate of 560 s–1. Microstructure evolution was investigated using optical microscopy, whereas 
texture changes were examined with the use of a scanning electron microscope equipped with the eBsD facility. the microstruc-
tural observations were correlated with nanohardness measurements to evaluate the mechanical properties of the sheared regions. 
the analyses demonstrate the gradual nature of the shear banding process, which can be described as a mechanism of the bands 
nucleation and then successive growth rather than as an abrupt instability. It was found that regardless of the initial orientation of 
the grains inside the sheared region, a well-defined tendency of the crystal lattice rotation is observed. this rotation mechanism 
leads to the formation of specific texture components of the sheared region, different from the one observed in a weakly or non-
deformed matrix. During the process of rotation, one of the {111} planes in each grain of the sheared region ‘tends’ to overlap 
with the plane of maximum shear stresses and one of the <110> or <112> directions align with the shear direction. this allows 
slip propagation through the boundaries between adjacent grains without apparent change in the shear direction. Finally, in order 
to trace the rotation path, transforming the matrix texture components into shear band, rotation axis and angles were identified.
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1. introduction

shear banding is a mechanism of strain localization that 
occurs in the majority of metallic materials deformed in the 
range of large strains. since a significant part of the plastic 
deformation work is converted into heat, it is clear that strain 
rate has to strongly determine the ‘rate’ of the heat generation 
and dissipation in the system. according to the rate of heat 
generation/dissipation, two types of shear bands (sB), namely, 
(i) isothermal shear bands (ISBs) and (ii) adiabatic shear bands 
(ASBs) [1] are distinguished. IsBs are formed during (semi)
static straining [2], i.e. under ‘conventional’ strain rates, when 
the heat generation rate is significantly lower than the rate of 
energy dissipation. thus, the temperature of the system may be 
assumed to be unaltered. the asB’s are formed under high and 
extremely high strain rates. In that case, the shear localization 
can be regarded as an adiabatic process because the heat within 
the narrow sB area is hard to diffuse in an extremely short time. 
this results in a rapid local increase of temperature and leads to 

the ‘thermal softening’ of material [3] along the band line. the 
formation of macro-/micro- scale asB is often associated with 
the presence of geometrical or microstructural defects [4]. It is 
a signal of reduction or complete loss of deformation ability 
and is considered as an important precursor to material failure 
[5] and dramatic degradation of the load-bearing properties of 
the metallic parts. therefore, it is typically considered to be 
detrimental to the strength of materials.

However, the elementary mechanism responsible for 
asB nucleation, thickening, and propagation across the grain 
boundaries is still relatively limited, despite a strong interest in 
the shear banding in poly- and single-crystalline metals. to date, 
a significant part of the literature that describes the mechanism 
of sB formation in the range of very high strain rates, links 
their appearance to heat dissipation and dynamic recrystalliza-
tion [6-10]. the leading paradigm is that competition between 
strain hardening (due to severe plastic deformation) and thermal 
softening (due to sharp temperature rise) determines the initia-
tion of the bands and the onset of failure. Hence, a large number 
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of works were focused on the criteria of sB nucleation [11,12], 
the structure evolution due to phase transformation [8,13], and 
the mechanisms of strain hardening and recrystallization [6,14]. 
this description of the phenomenon, based on the mechanism 
originally proposed by zener and Hollomon [1] assumes a desta-
bilizing effect of thermal softening of the material, in which 
the plastic work is converted into heat to a significant extent. 
thermal softening begins to dominate over strain hardening in 
given areas, especially in materials of low thermal conductivity 
[7,15-17]. this results in a sudden strain localization. another 
group of works is based on the assumption that the occurrence 
of sB at high strain rates is related to dynamic recrystallization 
[5,10]. this is due to the observation that asB formation is 
typically promoted by the low thermal conductivity of metals, 
[9,10,18-20], where a local increase of temperature leads to the 
formation of dynamically recrystallized grains and then to local 
‘softening’ of the adjacent structure and the band nucleation. 
However, the above descriptions of the mechanisms of asB 
formation contains some gaps:
• the first group of problems is related to the role of tem-

perature rise during the process. a large amount of plastic 
deformation leads to a strong increase in the energy stored 
in an asB area. experiments focused on the evaluation of 
temperature rise during the shearing process, e.g. [10,21,22] 
revealed that temperature rise and asB formation occur si-
multaneously, but clear evidence of their causal relationship 
was not defined. In metals of low thermal conductivity, tem-
perature rise increases the ability of the structure to dynamic 
recrystallization (even at room temperature). this leads to the 
conclusion that new recrystallized grains’ appearance inside 
the asB area is a ‘secondary effect’ since the new grains are 
formed by recrystallization of strongly deformed areas. 

• another aspect is related to the link between morphological 
changes and changes in the orientation of the crystal lattice 
during the band formation. In accordance with the model 
proposed to explain the mechanism of sB formation in 
materials deformed at ‘conventional’ strain rates, the initial 

stages of this process are associated with local, but strictly 
defined re-orientation of the crystal lattice in the narrow 
areas [23,24]. In fcc metals, this process leads to the forma-
tion of specific texture components within the sB, different 
from those identified in the surrounding, less deformed 
matrix. this allows crystallographic slip propagation in the 
neighbouring grains along the macroscopically observed 
shear band plane, with no apparent change in slip direction. 

However, during high-speed deformation, the sB forms 
also in metals of good thermal conductivity. this shows that the 
thermal conductivity of the material is not the decisive factor, 
or at least not the only factor, that decides for the nucleation of 
sB. the present work was aimed at tracing the exact ‘rotation 
path’ of the crystal lattice in face-centered cubic (fcc) metals 
deformed at high strain rates. Due to the axial geometry of 
specimens, well-defined sB demonstrating specific texture 
components were formed during displacement of the upper part 
of hat-shaped specimen (hat) towards the bottom one (brim). 
to capture texture changes corresponding to sB formation 
electron backscatter diffraction (eBsD) in a scanning electron 
 MicroscoPe (seM) was used. 

2. experimental

Hat-shaped specimens cut-off from hot-rolled aluminium 
(aa1050) described here as al, extruded copper (Cu-etP) 
described here as Cu, and Cuzn30 alloy described here as Br 
were selected for the experiment. an axial geometry of speci-
mens (Fig. 1a) contributes to the tendency of shear to appear in 
narrow areas even in materials that do not tend to localize strain 
easily. In the case of al, the specimens were cut-off so that the 
principal axis of the hat-shaped specimen (axial direction – aD) 
coincided with the normal direction (nD) of the hot-rolled sheet 
(Fig. 1b). In the case of Cu and Br, the aD of the hat-shaped 
samples coincided with the extrusion direction (eD) (Fig. 1c).

Fig. 1. (a) typical hat-shaped specimen dimension in millimetres and specimen orientation as machined from (b) the hot-rolled plate (aa1050 
alloy – al) and (c) the extruded rods (Cu and Cuzn30 alloy – Br)
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For the initial materials, orientation maps were measured 
on two mutually perpendicular sections: in the case of al on 
cross-sections perpendicular to rolling and transverse directions, 
whereas in the case of Cu and Br on the longitudinal section, i.e., 
parallel to the eD and on the transverse section, i.e. in the section 
perpendicular to eD. For post-processed hat-shaped specimens, 
morphological and textural analyses were conducted on the axial 
cross-section, whereas the texture components were analysed in 
the reference system associated with the axial (aD) and radial 
(RD) directions. the deformation process was carried out with 
the use of drop-hammer – instron ceast 9350, under applied en-
ergy of 600 J and strain rate of 560 s–1. to obtain assumed strain, 
the ‘stop rings’ were applied during the process. Macro-scale 
morphological changes were analysed using optical microscopy 
(oM) on etched specimens. in order to reveal the microstructure 
for oM observation, al specimen was electropolished prior to 
electrolytic anodising using a 3% HBF4 solution. Cu and Br 
samples, after mechanical polishing on 7000 sic papers, were 
etched with the use of chromium and nital (hno3 in C2H5oh) 
solutions, respectively.

More detailed microstructural and textural analyses of the 
initial and as-deformed materials were carried out using seM 
– fei Quanta 3d operating at 15-20 kv and equipped with an 
eBsD facility. the step sizes applied during the acquisition of 
the orientation maps ranged between 50 nm and 900 nm. very 
low step sizes (<100 nm) were applied to reveal details of the 
microstructural features, whereas larger step sizes (>100 nm) 
were applied to capture textural changes during the matrix in-
corporation into the macro- sB area. the binning size applied for 
data acquisition was 4 × 4. software used for eBsD analysis was 
tsl oiM analysis. the pole figures were calculated with har-

monic series expansion method (gaussian half-width of 0.2). 
grain dilatation was applied as cleaning criterion for eBsd 
map. For the purpose of determination of strain hardening after 
hammering, nano-hardness tests were carried out with the use of 
nanoindenter g200 agilent and fisher Pikodentor hM500.

3. results and discussion

3.1. initial microstructure and texture 

aa1050 alloy. the initial microstructure of the al sheet 
(Fig. 1a) is composed of flattened grains with dimensions in the 
rolling and transverse directions of several hundred microns. 
the grains thickness, i.e., dimension in the nD direction was in 
the range of 20-60 µm. In ongoing research, the boundaries of 
these flattened grains provide excellent markers to analyse the 
morphological aspects of sB formation due to displacement of the 
upper part of the hat to the inside of the brim. the initial texture 
of the al sheet was described by components typically observed 
in hot-rolled al-based alloy sheets/plates, i.e. two variants of 
brass{110}<112> orientations with scattering towards four 
variants of the s{123}<634> (Fig. 2a). the lack of two variants 
of C{112}<111> orientation, which are typically observed in 
strongly deformed face centred cubic (fcc) metals of high stacking 
fault energy (sFe) is associated with a well-defined representa-
tion of cube{100}<001> orientation, due to development of a 
significant fraction of fully recrystallized cube-oriented grains.

Copper and CuZn30 alloy. In the case of Cu (Fig. 2b) and 
Br (Fig. 2c), the initial materials consisted of equiaxed grains 
(as documented by seM/eBsD observation in two perpendicu-

Fig. 2. Microstructure and texture of as-received materials: (a) al, (b) Cu, and (c) Br. seM/eBsD orientation maps presented using IPF colour 
code combined with high angle boundaries (>15o) and corresponding the {111} pole figures.. the dashed lines indicate the relevant texture 
components, where s – {123}<634>, Brass (B) – {110}<112>, C – {112}<111>
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lar sections) with an average diameter of 40 mm and 150 mm 
for Cu and Br, respectively. after the extrusion, both materials 
exhibited a <111> and <100> double fiber texture, as analysed 
in axial and perpendicular to eD sections. 

3.2. Macro-scale morphological changes  
in shear band region

the specific shape of the specimens determines the charac-
ter of the shear surface. the displacement of the upper part of the 
hat into the interior of its lower part results in shearing along the 
surface, which in 3D is the lateral surface of the sheared cone. 
this specific character of the shear surface (resulting from the 
axial symmetry of the deformed specimen) causes that the sB 
observed on both sides of axial sections of the specimen are es-
sentially the same microstructural elements, but mirror-reflected. 
thus only one macro- sB (right or left) was analysed in each case.

to a first approximation, optical microscopy was applied to 
examine the macroscopically observed structural features of the 
sB on axial sections of the hat-shaped specimens. after deforma-
tion, the original structure of the hot-rolled and extruded samples 
has changed in the sheared regions, where forced shear stresses 
concentrate. Figs 3a-c show the microstructure of the sheared 
regions and their adjacent areas for al (a), Cu (b), and Br (c), 
between the upper and lower corners. It is clear that the degree 
of strain localization depends on the metal analysed, whereas the 
width of the sheared region varies strongly along the shear band 
line. the areas of most intense shear are located near both corners 

(near free surfaces) and propagate towards the inner regions of 
the sample. the widths of the sB gradually narrow down along 
the shear direction from the middle to the bottom or to a less 
degree from the middle to top layers of the sample. this leads 
to the conclusion that the sB are initiated near the free surfaces 
of the specimens, where the shear localization is greatest, and 
then propagate towards inner regions of the sample. In al and 
Cu, the forming sB are ‘dispersed’, while in the Br specimen 
the sB is much more localized. 

effect of displacement of the upper part of the hat is par-
ticularly well-observed in al samples. since the initial structure 
of al in sections parallel to the main sample axis is composed of 
flattened grains with the grain boundaries situated perpendicular 
to the main axis of the hat-shaped specimen, these boundaries can 
be used as specific markers of the morphological changes during 
sB formation. In the sheared area, the inclination of the flat-
tened grains fragments (in fact their boundaries) is changed via 
rotation that leads to the decrease of inclination of longer grain 
axes in relation to the main sample axis. the rotation angle of 
the flattened grains changes when moving from the matrix areas 
to the sB core areas. However, the magnitude of these changes 
is strongly dependent on the location of the analysed area along 
the band length; it is greatest in the areas near the free surfaces 
and decreases in the middle parts. a detailed analysis of the grain 
boundaries inclination carried out in the band shows a change 
from 0o (matrix) to 80o-85o in the band core. the mechanism 
of kink-type bands formation as a precursor of well-developed 
sB during matrix incorporation into the band area assumes 
that pile-up of dislocations in the vicinity of the potential shear 

Fig. 3. Macroscopic sB developed in hat-shaped specimens deformed at the strain rate of 560 s–1 in (a) al, (b) cu, and (c) Br. optical microscopy 
observation in polarized light. axial sections
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bands leads to a strictly defined rotation of the crystal lattice. 
as a result, the elements of the structure are gradually situated 
parallel to the shear direction [25].

In the case of Cu and Br, the regions of strongest strain 
localization are formed near the bottom free surfaces, while 
the upper part is much more diffuse. near the core of the band, 
only severely deformed and flattened grains are observed. the 
structure of the material lying away from the core of the band 
consists of the equiaxed grains, whereas the matrix is practically 
non-deformed. In the case of Br, the degree of strain localisation 
is much greater, as compared to al and Cu, particularly near the 
lower free surface. In this area, the band forms a straight line 
along with a large distance of the analysed cross-section. the 
structure of the band interior in these areas is extremely refined. 
areas of less localized deformation reveal the formation of 
a structure of strongly flattened grains, for which the position 
of the longer axis approaches the shear direction.

3.3. orientation changes resulting from the shear  
band formation

For as-deformed samples, all orientation maps presented 
in this study use the inverse pole figure (IPF) colouring code in 
which the red, blue and green colour represents <001>, <011>, 
and <111> direction, respectively. In some cases, the IPF maps 

were combined with the image quality factor. orientation maps 
were received from the central (axial) part of the samples cor-
responding to the non-deformed (or only slightly deformed) 
matrix as well as from the left or right sB region to capture 
texture image differences; this opens the possibility to determine 
the mechanism responsible for the sB formation. It was found 
that the orientations of the matrix undergo differentiated, but not 
accidental rotation during the matrix incorporation into the macro- 
sB area. However, strongly rotated grains in the band region are 
always located near the free surfaces, where one of the <110> 
crystallographic directions situates parallel to the shear direction. 

For the al sample (Fig. 4) measured texture of the matrix 
consisted of three main groups of orientations, which are defined 
as: (al)M1 – (–110)[–1 –12], (al)M2 – (04 –3)[–535], and (al)
M3 – (–110)[–5 –5 –2], as shown in the {111} pole figure of 
Fig. 4c. the groups of orientations present in the sB area were 
identified as: (al)MsBR1 – (–110)[–1 –13] and (al)MsBR2 – 
(02 –3)[–532] (Fig. 4d-e). an analogic procedure was applied 
for Cu specimens (Fig. 5). as presented on {111} pole figure 
(Fig. 5c) the non-deformed matrix of Cu was described by two 
main groups of orientations: (Cu)M1 – ( 2 1 4) [–10 –8 7] and 
(Cu)M2 – (–1 3 –2)[–8 –6 –5]. two main texture components 
were measured inside the macro- sB area (Fig. 5d-e), which 
were identified as: (Cu)MsBl1 (6 5 –1)[6 –7 1] and (cu)MsBl2 
(1 1 –1)[–6 7 1]. the initial texture ‘image’ of Br (fig. 6 c) was 
composed of two groups of components, that can be described 

fig. 4. orientation changes resulting from macro- sB formation in aa1050 alloy. seM/eBsd orientation maps measured in nd-td section: 
(a) matrix and (b) macro- sB. (c) {111} pole figure with marked orientation groups identified in the matrix (M1, M2, M3). (d) and (e) {111} and 
{011} pole figures showing texture from the macro- sB area (MsBR1 and MsBR2). Black dotted lines mark main texture components present in 
matrix and macro- sB area, whereas red dotted lines reflect the traces of {111} planes and <110> directions corresponding to shear plane and 
shear direction, respectively. Maps are presented as a function of IPF and image quality factor. step sizes of 200 nm and 150 nm, for the matrix 
and macro- sB area, respectively, were applied
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fig. 5. orientation changes due to macro- sB formation in cu specimen. seM/eBsd orientation map measured in ad-rd section: a) matrix 
and (b) macro- sB. (c) {111} pole figure with marked orientation groups identified in the matrix (M1, M2). (d) and (e) {111} and {011} pole 
figures showing texture from the macro- sB area (MsBl1 and MsBl2). Black dotted lines mark the main texture components present in matrix 
and macro- sB area, whereas red dotted lines reflect the traces of {111} planes and <110> directions corresponding to the shear plane and shear 
direction, respectively. Maps are presented as a function of IPF and image quality factor. step sizes of 400 nm and 200 nm for non-deformed 
matrix and macro- sB area, respectively, were applied

fig. 6. orientation changes due to macro- sB formation in Br specimen. seM/eBsd orientation map measured in ad-rd section: a) matrix 
and (b) macro- sB. (c) {111} pole figure with marked orientation groups identified in the matrix (M1, M2). (d) and (e) {111} and {011} pole 
figures showing texture from the macro- sB area (MsBR1 and MsBR2). Black dotted lines mark main texture components present in the matrix 
and macro- sB area, whereas red dotted lines reflect the traces of {111} planes and <110> directions corresponding to the shear plane and shear 
direction, respectively. Maps are presented as a function of IPF and image quality factor. step sizes of 1 um and 200 nm for non-deformed matrix 
and macro- sB area, respectively were applied
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as: (Br)M1 – (1 3 4)[–1 –1 1] and (Br)M2 – (9 8 2)[–6 5 7]. the 
appearance of macro- sB leads to (Fig. 6d-e) the texture com-
ponents that may be described as: (Br) MsBR1 – (–2 3 –6)[–6 
10 –3] and (Br) MsBR2 (9 5 8)[–3 7 –1]. 

other experimental studies, e.g. [24,26] point out the fact 
that a deflection of the layered structure within narrow areas 
precedes sB formation and influences the textural changes. 
this study clarifies the complex mechanisms responsible for 
macro- sB formation (see section 3.6).

3.4. strain hardening inside macro- sb.  
nano-hardness measurements

nanohardness measurements were carried out in each 
sample along a line scan across the shear band, starting and 
finishing in non (or less)-deformed matrix on both sides of the 
band. the part of the bands characterized by the largest shear 
strain localization was selected for measurements in each case. 
In other words, nanoindentation measurements were performed 
in the region where a most radical strengthening, with respect 
to the matrix, was demonstrated. In the case of al and Cu speci-
mens, the microstructure of the band interior is composed of 
strongly flattened grains. For the Br sample, characterized by 
low sFe, the interior of the band consists of highly dislocated, 
extremely small grains. this leads to a significant increase in 
nanohardness. the grains outside the band, especially those lo-
cated in the axial areas of the specimens are non-deformed during 
impact, and no noticeable increase in the matrix nanohardness 
values is observed. the distribution of strain hardening (fig. 7) 
shows that the nanohardness across macro- sB increases in the 
band area, and the maximum value corresponds to the core of 
the band, i.e. regions of the highest inclination of the flattened 
grains in al and Cu or in ultra-fine-grained fragments of the band 
in the Br. in the core of the bands (figs. 7a-c) the nanohardness 
is 1.6 times higher than in the surrounding non-deformed matrix.

3.5. lattice re-orientation within macro- shear band 

the optical micrographs and orientation maps in the area 
of the macro- sB of figs. 3-7 revealed thin kink bands situated 
along the shear direction. the very first plastic instability within 
narrow areas by which the shear banding began, is similar to 
that observed earlier by teM for the twinned structures of vari-
ous fcc metals, e.g. [27]. the sense of this deflection could be 
described by a rotation that tends to decrease (in the analysed 
axial section) of the longer grain axis inclination with respect 
to the axial direction. 

In this section, the details of the mechanisms responsible 
for the crystal lattice re-orientation in the sheared zone were 
examined. It is assumed here that the identification of rotation 
axes in the disorientation relation between the matrix and macro- 
sB is crucial in order to understand the mechanisms responsible 
for bands formation. During this process, texture components 

of the non-deformed matrix are transformed into the groups of 
orientations observed inside the macro- sB via specific rotations. 
In all analysed crystal lattice rotations, leading to incorporation 
of the matrix into the macro- sB area result from the activity of 
specific {111}<011>-type slip system(s). this implies the occur-
rence of the rotation axis that is perpendicular to the normal of 
the active {111}-type slip plane and <110>-type slip direction. 
as a result of the activity of the {111}<110> systems, the matrix 
orientations undergo rotation around one of the <112>-type axis 
(single slip system) or <110>-type axis (double slip systems) 
resulting in the formation of main groups of texture components 
corresponding to the macro- sB area. Identified rotations for all 
metals are described as follow:
(a) al
 M1(–1 1 0)[–1 –1 2] + 15o rotation around [–1 1 0] ð  

MsBR1 (–1 1 0)[–1 –1 3]
 M2(0 4 –3)[–5 3 4] + 35o rotation around [–1 1 0] ð 

MsBR2(b) (0 2 –3)[–5 3 2]
 M3(–1 1 0)[–5 –5 –2] + 35o rotation around [–210] ð 

MsBR2(a) (–5 5 1)[–4 –3 –5]

fig. 7. nanohardness measurements across macro- sB (MsB) in (a) al, 
(b) Cu and (c) Br specimen showing the distribution of strain hardening. 
the measurement was carried out along the ‘line scan’ traversing the 
macro- sB. Dashed lines were applied in order to separate the macro- 
sB from the matrix area
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(b) Cu
 M1(2 1 4)[–10 –8 7] + 20o rotation around [0 1 1] ð  

MsBl1 (6 5 –1)[6 –7 1]
 M2(–1 3 –2)[–8 –6 –5] + 30o rotation around [0 –1 1] ð 

MsBl2 (1 1 –1)[–6 7 1]
(c) Br
 M1(1 3 4)[–1 –1 1] – 20o rotation around [1 –2 –1] ð  

MsBR1 (–2 3 –6)[–6 10 –3]
 M2(9 8 2)[–6 5 7] + 30o rotation around [–2 1 1] ð  

MsBR2 (9 5 8)[–3 7 –1]
the schematic presentation of rotations transforming 

texture components of the matrix into the macro- sB texture 
components, for al, cu, and Br are shown in figs. 8a-c, respec-
tively. Identification of rotation axes and angles in disorientation 
relation between texture components of matrix and sB provides 
essential information needed to elucidate the transformation 
mechanisms. analyses based on orientation changes resulting 
from the shear banding showed that groups of orientation identi-
fied in the matrix undergo different rotations – around <110>- 
or <112>-type axes. those rotations are associated with the 
dominance of different active slip systems of {111}<011>-type. 

the systematic crystal lattice rotation inside the macro- sB 
(during incorporation of the matrix into the sB area) is respon-

sible for changing the dominant slip system(s), which always 
occurs in agreement with the schmid-Boas relationship. It is 
clear that the activity of new slip system(s) leads to a new rota-
tion tendency of the crystal lattice as discussed in earlier works 
for fcc [24,28] and bcc [29,30] metals. these rotations are also 
crucial for slip propagation across the grain boundaries.

3.6. slip propagation across the grain boundaries

shear propagation through the grain boundaries is an 
important feature in the process of macro- sB formation. the 
situation is simple when the neighbouring flattened grains have 
a similar orientation, and one of the {111} planes (in each grain) 
coincides with the plane of maximum shear stresses. However, 
slip propagation also takes place in regions of quite different 
orientations. nevertheless, from a crystallographic point of view, 
the existence of a {111} plane common for both areas is required.

the description of the crystal lattice rotation is also crucial 
to understanding the mechanism of slip propagation across the 
grain boundaries. thus, more detailed eBsD measurements with 
a step size of 50 nm were carried out for the Br sample in regions 
of shear localization (fig. 9) to determine the mechanism respon-

fig. 8. stereographic projections showing rotations of components identified in matrix into positions inside the macro- sB for: (a) al, (b) cu and 
(c) Br. the purple dot reflects the rotation axis. (M – texture component of the matrix, MsB – texture component identified in the sheared zone)
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sible for the re-orientation of the initial crystal lattice in adjacent 
grains. Based on analysis of the slip traces and corresponding the 
{111} and {110} pole figures (showing orientations of matrix 
and macro- sB areas) it is deduced that the crystal lattice (as 
shown for grain 1, grain 2, and grain 3) rotated in such a way 
that traces of one of the {111} slip planes became nearly parallel 
to the direction of maximum shear, although the orientations of 

some grains were less or more different. schematic presentation 
of an aspect concerning the macroscopically observed shear band 
despite slight misfit between {111} planes and <110> directions 
in the grains and shear band is shown in Fig. 10.

4. Conclusions

In the present study the mechanism of the microstructure 
and texture evolutions resulting from the macro- sB formation in 
aluminium, copper, and brass deformed at a strain rate of 560 s–1 
was clarified. with reference to the following research the most 
essential characteristics are:
(i) for the applied strain rate all analysed metals show a ten-

dency to strain localization. However, the morphology of 
the bands formed, and especially their thickness is strongly 
dependent on the metal analysed. In all cases, the areas of 
most intense shear are always located near both corners 
(near free surfaces) and propagate towards the centre of 
the sample. 

(ii) as the sFe of the tested metals decreases, the strain 
localization tendency increases. In al the formation of 
broad kink-type bands occurs while in Br relatively nar-
row regions of strongly localized strain are observed. Cu 
represents an intermediate behaviour.

(iii) the microstructure inside the sB and neighbouring severely 
deformed areas do not show any evidence of recrystalliza-
tion, even in high stacking fault energy al. therefore, it is 

fig. 9. Microstructure observed inside the area of macro- sB showing slip propagation across the grain boundaries (grains 1-3). orientation map 
displayed using image quality factor. the {111} pole figures showing the situation of important the {111} planes being nearly parallel to the 
shear plane (marked by black circles) and <110> directions being nearly parallel to the shear direction (marked by red dashed line). seM/eBsD 
orientation measurements with step size of 100 nm

Fig. 10. schematic representation of macroscopically observed sB plane 
composed of slightly disoriented planes in neighbouring grains. β – mis-
fit angles between <110> direction and macroscopic shear direction
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concluded that thermal softening or/and dynamic recrystal-
lization does not play any important (if at all) role in the 
formation of sB under applied strain rate. 

(iv) Morphological changes due to the occurrence of macro- 
sB are associated with the crystal lattice rotation in the 
grains situated within the sheared zone. the crystal lattice 
re-orientation inside particular grains tends to situate one 
of the {111} planes parallel to the macro- sB plane, while 
the <011> direction is parallel to the shear direction. this 
transformation coincides with the formation of new texture 
components different from those identified in the non-
deformed matrix. However, in each case, the orientation 
relationship between the texture components of the matrix 
and the band interior can be described by a rotation around 
the <112> or <110> axis.

(v) nanohardness within the centre of the macro- sB was ~ 60% 
higher than the as-received materials indicating a strong 
strain-hardening effect in the band region. 
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