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DEVELOPMENT OF THE JACKSON AND HUNT THEORY FOR RAPID EUTECTIC GROWTH

A development of the Jackson-Hunt’s theory is delivered. Contrary to Jackson-Hunt’s theory for ideally coupled growth the 
current description is dealing with the coupled eutectic growth which is more realistic than an ideal course of eutectic structure 
formation. Thus, the undercooling of every eutectic phase is not equal to each other. A new boundary condition is introduced to 
solve the diffusion equation. According to this condition, the eutectic concentration is always maintained at the triple point of the 
solid / liquid (s/l) interface. Therefore, the solution to diffusion equation is given separately for both lamellae. The mass balance 
is satisfied by the current solution. Both thermodynamic equilibrium and mechanical equilibrium are assumed to be situated at 
the triple point of the s/l interface, only. A protrusion of the leading phase over the wetting phase is defined mathematically due 
to the mass balance fulfilment. The current description is associated with the asymmetrical phase diagrams. Finally, the current 
description is applied to interpretation of the rapid eutectic growth. Therefore, Aziz’s concept for the changes of partition ratio 
versus growth rate is introduced into the description. As a result, the rapid formation of the eutectic structure is described by the 
oscillatory mode. Interpretation of the oscillatory mode of the eutectic structure formation is illustrated in the arbitrary eutectic 
phase diagram. The eutectic structure, obtained through the detonation gas spraying onto the steel substrate (rapid solidification) 
is delivered to illustrate the present description.

Keywords: Jackson and Hunt theory, diffusion equation; coupled eutectic growth, Aziz’s theory, oscillatory mode of eutectic 
growth 

1. Introduction

Many experiments involve the rapid solidification. Par-
ticularly, the detonation method (D-Gun spraying onto the steel 
substrate) applied to creation of some intermetallic compounds 
/ phases and solid solutions accompanied by the eutectic pre-
cipitates promotes the rapid solidification. 

1a. Rapidly formed eutectic structure. 
Experiments 

Some sub-layers can evince even the amorphous morphol-
ogy, [1,2]. The partially melted, then rapidly solidified Fe-Al 
particles form multi-layers morphology which can appear in 
sequence, [3]. Sometimes, the Ni-Al – transition interlayer is 
added to improve the adherence of the Fe-Al – coating to the 
steel substrate, [4]. Solidification of the partially melted Fe-Al 
particles sprayed onto the steel substrate leads to formation of 
a kind of micro-joints in the coating. In some situations, the 
rapidly formed eutectic structure is observed, Fig. 1.

It should be emphasized that the oscillatory mode of some 
sub-layers formation was revealed / detected, Fig. 2, and de-
scribed / illustrated, Fig. 3, [5]. 

The eutectic precipitates were accompanied the cellular 
morphology created due to the unidirectional solidification dur-
ing the DGS experiment, Fig. 4. 

Usually, some parts of the Fe-Al particles are melted and 
then solidified rapidly but some parts of these particles remain 
non-melted, [6]. The current observations of the rapidly formed 
morphology confirm the presence of rapidly solidified eutectic 
in the neighborhood of oriented cells, Fig. 4.

Therefore, the Jackson and Hunt theory, [7], formulated 
for the formation of the micro-field of solute concentration is 
subjected to a modification in order to describe the mechanism 
of the rapid solidification of the eutectic phases.

1b. Some modifications and applications of the Jackson 
and Hunt theory 

The Jackson and Hunt theory is dealing with the so-called 
ideally coupled growth of the eutectics. Solving the diffusion 
equation for the stationary eutectic growth, the authors, [7], were 
able to predict the solute concentration micro-field ahead of the 
moving s/l interface. Unfortunately, the solution was obtained 
by imposing the common cosine function for both lamellae. 
Therefore, the mass balance is violated in this description of the 
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Fig. 1. Micro-joints revealed in the Fe-Al particle partially melted during its D-Gun deposition onto the steel substrate, a/ general view on the 
particle morphology, nm1; nm2 – non-melted parts of the particle forming a joint; εN – non-equilibrium form of the ε – phase; f 1 + f 2 two dif-
ferent phase formed through an oscillatory mode; εA – amorphous form of the ε – phase; e1 + e2 – eutectic precipitates, b/ the same morphology 
with the dotted line illustrating the joint axis

Fig. 2. Schematic view on the micro-joint formed from the melted part of the Fe-63Al particle deposited on the steel substrate by the DGS-method 
(with no eutectic precipitates)

Fig. 3. Thermodynamic model for an ideal formation of the Fe2Al5, and FeAl – phases in the micro-joint, a/ phase diagram for stable equilibrium, 
b/ schematically shown phase diagram for meta-stable equilibrium with the T0 – temperature; A – hypothetical point for the εA – amorphous phase 
formation with k = 1 (partition ratio); N0 – nominal solute concentration of the particle; the ε – phase field disappearing is visible; the FeAl, and 
Fe2Al5 phases are in the neighborhood of the O – point of oscillation at which both mentioned phases are formed
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concentration micro-field. As a result, the connected temperature 
micro-field suggest that a part of the s/l interface of one lamella 
could be melted, [8]. It occurs since this part of the s/l interface 
is constitutionally overheated instead of be undercooled. 

Some further modifications of the Jackson and Hunt theory 
consider the stability of the eutectic growth with the fulfilment 
of mechanical equilibrium at the triple point of the s/l interface, 
[9]. Although the stationary state is ensured some faults can ap-
pear in the lamellar eutectic structure, [10]. 

According to the Jackson and Hunt theory the spacing 
of lamellar structure is controlled / selected by the minimum 
undercooling condition. This condition is equivalent to the 
condition of maximum velocity of the s/l interface movement, 
[11]. Unfortunately, both conditions are the intuitive criteria, 
only. In reality, the eutectic growth occurs near the minimum, 
[7,8].

The effect of capillarity parameters (mechanical equilib-
rium) is essential for the stationary eutectic growth, [12]. Also 
the forced convection results in some disturbances of lamellar 
eutectic structure because the solute concentration micro-field 
is perturbed by the mentioned phenomenon, [13]. The fault-free 
lamellar structure seems to be obtainable when the eutectic thin 
films are solidified, [14]. The wetting phenomena can also be 
referred to the eutectic structure formation and finally to the 
Jackson and Hunt theory, [15].

Even the appearance of the tilt domains within the gener-
ally stationary lamellar structure can be connected theoretically 
with the Jackson and Hunt theory, [16]. It was proved that the 
description of the so-called quasi-stationary eutectic growth 
originates from the Jackson and Hunt theory, [17].

The mentioned models / treatments based on the Jack-
son and Hunt theory assume the ideally coupled growth of 
the lamellar or rod-like structure (ΔTα = ΔTβ) and fulfilment 
of the minimum undercooling condition. However, it was 

proved theoretically, that the regular eutectic growth is located 
within a certain interval of spacing selection near the minimum, 
[18]. 

ΔTS; S = α, β is the s/l interface undercooling of a given 
eutectic phase.

Some similarities between the description of the cellular – 
eutectic growth occurring along the eutectic mono-variant line 
towards the three phases region and Jackson and Hunt theory 
are perceptible, [19].

The Jackson and Hunt theory was very fruitful in the de-
velopment of the concept of eutectic structure transformation 
(lamellar into rod-like), [20]. However, in this case, the criterion 
of minimum entropy production justified mathematically (by the 
Liouville’s theorem) was applied instead of the intuitive condition 
of minimum undercooling. 

1c. Role of the Jackson and Hunt theory in the description 
of irregular eutectic growth

An unusual significance of the famous Jackson and Hunt 
theory has been emphasized by its application to all known de-
scriptions of irregular eutectic growth. For example, the theory 
of branched limited growth of irregular eutectics assumes the 
localization of the regular eutectic structure formation (regular 
structure appearing locally among generally irregular morpholo-
gies) exactly at the undercooling minimum where the Jackson 
and Hunt theory is applicable, [21]. Thus, the regular eutectic 
spacing can be treated as the minimal distance visible among 
all distances revealed within the generally irregular eutectic 
morphology, [22-25]. Two extremely different spacing: minimal 
one (regular spacing existing among the generally irregular 
morphologies) and maximal one with extremely perturbed non-
faceted eutectic phase are shown in Fig. 5.

Fig. 4. Morphology of the Fe-Al coating deposited on the steel substrate by the D-Gun method, (coating about 100 mm thick formed from the Fe-Al 
powder containing particles of 40-75 mm in diameter), a/ cells of the εN – phase surrounded by the eutectic precipitates, b/ E – an eutectic formed 
during rapid solidification; C – columnar morphology localized in the vicinity of the eutectic precipitates and growing in two different directions
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2. Current development of the Jackson 
and Hunt theory 

Some modifications of the Jackson and Hunt theory tried 
to improve the understanding of physical mechanisms of so-
lidification. For example, a simple solution is delivered for the 
nearly isothermal s/l interface which differs from that given by 
the Jackson and Hunt theory only by a corrective factor reflect-
ing the density differences between eutectic phases, [26]. Based 
on this modification, it can be concluded that the real shape of 
the eutectic phases is to be parabolic one for regular structure 
formation as shown in Fig. 5. Thus, two types of the shape of the 
regular eutectic s/l interface are to be differentiated: parabolic 
convex and parabolic concave, Fig. 6. 

A modified relationships between growth rate, lamellar 
spacing and the s/l interface undercooling are the subject of recent 
generalization of the Jackson and Hunt theory, [27].

According to some suggestions delivered for the rapid eu-
tectic growth, [23], a limit of absolute stability can be reached. 
However, at first, the ideally coupled eutectic growth assumed 
by the Jackson and Hunt theory is to be replaced by the coupled 
eutectic growth, [28]. Thus, 

 T T   (1)

as required by the asymmetrical eutectic phase diagrams. Con-
sequently, 

 0 ,0 ,0 0S EC S C S C   (2a)

Fig. 5. Shapes of the non-faceted phase (s/l interface as frozen) revealed for stationary growth of the rod-like irregular eutectic (with branching 
phenomenon), a/ parabolic shape of the s/l interface (of the non-faceted phase) typical for regular eutectic existing among the generally irregular 
eutectic morphologies, b/ marginally stable s/l interface of irregular eutectic (of the non-faceted phase) typical for maximum perturbation wave 
appearing at this interface just when the morphological bifurcation of the faceted eutectic phase is expected

Fig. 6. Mechanical equilibrium at the triple point of the s/l interface for stationary growth of the rod-like / lamellar eutectic structure, a/ for the 
convex / concave interface, b/ for the convex / convex interface
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 0 ,0 ,0 0ESC S C S C   (2b)

 CS
α – equilibrium solute concentration in the α – phase,

 CS
β – equilibrium solute concentration in the β – phase,

 CE – solute concentration at the eutectic point. 
The diffusion equation for the stationary eutectic growth 

is as follows:

 
2 2

2 2 0C C v C
D zx z

  (3)

C – the B – solute concentration in the liquid.
The proposed solution to Eq. (3) can be given as a certain 

product:

 ( , ) ( ) ( )C x z X x Z z   (4)

with the co-ordinate system attached to the plane s/l interface 
just at the middle of the α – phase lamella, Fig. 7. 

Fig. 7. Coordinate system attached at the s/l interface moving with 
the v – velocity, and definitions of the half the width of both eutectic 
lamellae, Sα, Sβ, respectively. 

Quite new boundary condition is inserted to the current 
description:

 , , 0EC S z C S z C   (5)

The above boundary condition simplifies to formulate the 
solution, Eq. (4), separately for both lamellae.

The Jackson and Hunt theory does not take into account Eq. 
(5). However, this very important and fruitful in consequences 
assumption given by Eq. (5) does not allow to appear a discon-
tinuity of solute undercooling (constitutional undercooling) and 
resulting micro-filed of the temperature at the s/l interface. Thus,

 
2

2
2( ) exp

2 4
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D D

  (6)

 ( ) cos( ) sin( )X x A x B x   (7)

D – diffusion coefficient in the liquid.
The other boundary conditions are similar to those used in 

the Jackson and Hunt theory:

 0, for 0, andforC x x S S
x

  (8)
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After some rearrangements and with the application of plane 
s/l interface, Fig. 7 the description of the solute micro-field ahead 
of the s/l interface is:

A) for the α – eutectic phase, that is for x  [0, Sα], z ≥ 0. 
The value of the B, and ω – parameters results from the 

application of the following (modified) condition:

 
0

( , ) 0
x

C x z
x

  (8a)

So, the formula: –ωAsin(ω · 0) + ωBcos(ω · 0) = 0, yields 
B = 0. Additionally,

 2 1
(2 1) , 1, 2,
2n
n n
S

  

Combining Eq. (4), Eq. (6), and Eq. (7) with Eq. (5) and 
Eq. (8a)) the solution to Eq. (3) is:
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where, A2n–1, are constant. The following conditions allow to 
define the A2n–1 – parameter:
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then:
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It is worth to note that the introduced function f (x), has the 
following properties: 
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Assuming that: f (x + 2Sα) = – f (x), it yields: a2k = 0, 
k = 0,1,2,... for n = 2k.
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Finally, the Fourier’s series for f (x) can be shown as:

 2 1
1
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k
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Finally, the definition the A2n–1 – parameter is:
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It can be readily proved that the obtained solution, Eq. 
(10), and Eq. (17), satisfies the conditions applied to the current 
description:
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according to the assumptions: 

 fα(–x) = fα(x), fα(x + 2Sα) = –fα(x)

B/ analogously, for the β – eutectic phase, that is for: 

 x  [Sα,Sα + Sβ], z ≥ 0:
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with,
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Both, separately obtained solutions to Eq. (3), for the 
α – phase lamella, (Eq. (10) with the accompanying Eq. (17)) 
and for the β – phase lamella, (Eq. (20) with the accompanying 
Eq. (21)) are presented schematically in Fig. 8. 

The concept of the coupled eutectic growth, Eq. (1), is taken 
into account, Fig. 8.

Fig. 8. Solute temperature / concentration micro-field (bold lines) local-
ized in the arbitrary phase diagram for z = 0, according to the concept 
of the coupled eutectic growth, the x – geometrical axis showing the 
lamellae size is added

Consequentially, these solutions, can also be shown in the 
both, C(x)|z=0, and T (x)|z=0 co-ordinate systems, Fig. 9. 

Fig. 9. Localization of the thermodynamic equilibrium, (CE,TE), in frame 
of the results of the current description for the lamellar eutectic structure 
formation, a/ solute concentration micro-field with the localization of the 
CE – parameter, b/ solute temperature (equilibrium temperature) micro-
field with the localization of the TE – parameter, Tα*,Tβ* – temperature 
of the s/l interface for the α – phase lamella, and for the β – phase 
lamella (curvature undercooling is taken into account), respectively 
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Concluding remarks

The obtained solution is to be verified by means of the so-
called local mass balance calculation:

 
0

( ,0) ( , ) 0
S SS

S

dC x dx C x dx   (23)

The local mass balance, Eq. (23), is satisfied under condi-
tion that the d – protrusion of the β – leading eutectic phase over 
the α – wetting eutectic phase is taken into account, theoreti-
cally, Fig. 10. It is justified since the phase protrusion has been 
observed experimentally, [29,28]. Moreover, the protrusion is 
to be expected according to the assumption of coupled eutectic 
growth, ΔTα ≠ ΔTβ, Eq. (1). 

Fig. 10. Visualization of the local mass balance with the phase protru-
sion taken into account

Eq. (23) yields:
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The above mass balance, Eq. (24), allows to formulate the 
theoretical definition for the d – phase protrusion, Fig. 10. The 
prediction of the d – phase protrusion is the advantage of the 
current description for the stationary eutectic growth. The result-
ant definition of the d – phase protrusion is given as follows:
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The current description of the solute concentration micro-
field, Eq. (10), and Eq. (20), can be perfectly, mathematically 
reduced to analogous description delivered by Jackson and Hunt 
theory. However, it must be assumed that Sα = Sβ. In the conse-
quence, C0

α = C0
β according to the condition: B0 = 0 (the B0 – pa-

rameter is defined in the Jackson and Hunt theory). Moreover, 
the d – phase protrusion disappears, (d → 0), when Sα = Sβ, and 
C0
α = C0

β in the current description. Thus, the present coupled 
eutectic growth could be reduced to the ideally coupled eutectic 
growth assumed by the Jackson and Hunt theory.

Consequentially, the CE – eutectic concentration comes 
back to the α /β – phase boundary, that is to the triple point of 
the s/l interface in the Jackson and Hunt theory (when Sα = Sβ). 
In this case, the local mass balance is satisfied (even for z = 0) 
in the Jackson and Hunt theory. Then, the Jackson and Hunt 
theory accepts the condition defined by Eq. (5), when Sα = Sβ.

It can be concluded that the current description is a general 
formulation for the solute concentration micro-field and can be 
applied to all asymmetrical phase diagrams for which, Sα ≠ Sβ; 
C0
α ≠ C0

β. If so, it is possible to modify the current equations in 
order to understand the mechanism of the rapid eutectic growth 
frequently observed experimentally, [1-6]. Contrary to the known 
suggestions, [23], according to which the numerical treatment 
of the problem is possible, only, the current description tries to 
analyze the rapid eutectic growth analytically. 

Thus, the concept of varying partition ratio versus solidifica-
tion rate, [30], is to be applied to the current description as shown 
schematically in Fig. 3b. In this case an oscillatory mode of the 
eutectic structure formation could be expected. The mentioned 
mode differs from that which appears during the slow growth of 
the single crystal reinforced by the eutectic precipitates, [31,33]. 
The current illustration of the oscillatory mode of the eutectic 
structure formation is shown schematically in Fig. 11 for the 
k – partition ratio equal to unity. 

Fig. 11. Arbitrary eutectic phase diagram (red dashed lines) and modi-
fied phase diagram (bold lines) for the rapid eutectic growth with k = 1, 
and C0

α = 0; C0
β = 0; oscillatory mode of the both eutectic phases ap-

pearance is illustrated by double arrows

Some equations of the current descriptions are to be modi-
fied while considering the rapid eutectic growth. First, fα(x) = 0, 
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x  [0, Sα], Eq. (11), and fβ (x) = 0, x  [Sα, Sα + Sβ], Eq. (22). 
In simplification, both functions: fα(x); fβ (x) can be replaced by 
the condition applied in the Jackson and Hunt theory. Then, the 

following conditions arise: 0 00; 0
vCvC

f x f x
D D

  

according to the eutectic phase diagram for rapid solidification, 
Fig. 11, where C0

α = 0; C0
β = 0.

Consequentially, A2n–1 = 0; B2n–1 = 0, Eq. (17), and Eq. (21). 
It results in disappearing of the solute concentration micro-field 
ahead of the s/l interface, δC(x, z) → 0, Eq. (10), and Eq. (20). 
Instead, an oscillatory mode of the eutectic structure formation 
appears, Fig. 11.

The current development of the Jackson and Hunt theory 
(worked out for the lamellar eutectic structure formation, only) 
shows that the triple point of the s/l interface plays an unusual 
/ essential role in the eutectic structure formation. Not only the 
mechanical equilibrium is situated at this point, Fig. 6, but the 
thermodynamic equilibrium as well, Eq. (5), Fig. 8, and Fig. 9. 

The localization of the thermodynamic equilibrium in the 
considered systems is necessary for the calculation of the entropy 
production per unit time, [32], and its minimization required 
by the stationary state definition. Usually, the thermodynamic 
equilibrium was attributed to the whole s/l interface, [32]. The 
current development of the Jackson and Hunt theory indicates 
that the thermodynamic equilibrium can be attributed to the 
α /β – phase boundary and particularly to its moving triple point. 
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