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FORECASTING THE DISTRIBUTION OF PRECIPITATE DIAMETERS IN THE PRESENCE OF CHANGES 
IN THE STRUCTURE OF THE MATERIAL

The results of investigations on the microstructure of T23 and T24 low-alloy steels as well as P91 and P92 high-chromium 
steels in the as-received condition and after 70.000 h annealing at 550-650°C are presented. The quantitative analysis of the 
existing precipitates was performed for representative images of microstructure. The statistical analysis of collected data allowed 
the parameters of a selected theoretical statistical distribution to be estimated. A forecast of average precipitate diameter and 
standard deviation of such a distribution for the time of 100,000 hours at 550 and 600°C for T23 and T24 steels and at 600 and 
650°C for P91 and P92 steels was calculated. The obtained results of investigations have made it possible to compare changes in 
the microstructure of various steel grades due to long-term impact of elevated temperature. They have also confirmed the possi-
bility of using, in evaluating the degradation degree of materials in use, the forecasting methods that derive from mathematical 
statistics, in particular the theory of stochastic processes and forecast by analogy methods. The presented approach allows the 
development of a forecast of precipitate diameter probability density under the microstructure instability conditions for selected 
steel grades. The assessment of material condition that takes into consideration, but is not limited to, the precipitate diameter 
measurement is useful as an assessment component in estimating the time of safe service of power unit elements working under 
creep conditions.
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1. Introduction

To estimate the exhaustion degree of the examined steels 
based on changes in their microstructure, it is necessary to under-
stand the behaviour of the materials at elevated temperature over 
a long time of exposure [1-5]. The long-term investigations that 
are being carried out indicate that changes in the microstructure 
of steel take place in the basic phase components, resulting in 
the loss of service life, and thus determining their suitability for 
further service. The contribution of individual processes and 
their intensity in the loss of life depends on the structure in the 
as-received condition and working temperature [6-10].

The subject of the article is the application of statistical ap-
proach to precipitate diameter forecasting for each distribution 
parameter (not only the average). The observation of the struc-
ture of materials leads to a conclusion that traditional theories 
do not reflect the high degree of complexity and heterogeneity 
of real materials. Such materials may have a common feature: 
the existence of the microstructure that is unique. It can be 
concluded that the image of the microstructure is highly com-
plex and characterized by randomness. Its description should 
therefore apply to specific mathematical methods to assume 
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the randomness and complexity. Mathematical statistics meets 
such conditions.

The above-mentioned approach may be treated as a verifi-
cation of and supplement to models derived from the theory of 
thermodynamics, which describes development of the carbide 
precipitation process in steels. The basic models include [11]:
– average precipitate radius approximation,
– Euler approximation for multiple classes of precipitates,
– Lagrange approximation for multiple classes of precipitates.

They allow the quantitative description of the development 
of precipitates over time including the geometric parameters of 
precipitates.

2. Methodology

The microstructural investigations were carried out with 
a scanning electron microscope (SEM) on conventionally 
prepared nital-etched metallographic microsections. The quan-
titative analysis of precipitates was carried out using the image 
analysis system. The image analysis system was calibrated us-
ing the scale marker placed in structure images. The calibration 
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coefficient was: 1 pixel = 0.040 μm. The measuring frame of 
1020×940 pixels was applied to every analyzed image.

Statistical analysis of collected data with the aim of estimat-
ing the parameters of selected theoretical statistical distribution, 
followed by the calculation of a forecast of the expected value 
and standard deviation of such a distribution, was made for the 
future time of service. Finally, a forecast for the entire distribu-
tion was made based on the assumption that it took the form of 
a log-normal distribution.

The data set was obtained from a few moments. Thus, the 
analysis of stochastic processes, which are probabilistic models 
of time-dependent phenomena that occur in reality, needs to be 
referred to [12,13]. The database, including data based on which 
the statistical inference is conducted, is formed by the results of 
random samples from considered moments. If only one stochastic 
process realization is available, we deal with a time series. Statis-
tical inference is easier when stochastic processes are character-
ized by stationary and ergodicity properties. ‘Stationary of a pro-
cess’ means that the expected value and variance are constant 
over time, whereas its ergodicity means that extrapolation of the 
past in the system is a reliable indication for the future, and this 
means that the structure of this system remains stable over time. 
Thus, a change is perceived as a continuous movement towards 
a present result where the sequence of events produces no real 
effects and has no qualitative impact on structure of the system. 
Dynamic changes always result in a stable general equilibrium, 
regardless of at what point the process started. In case of a lack 
of ergodicity properties, it is necessary to change the approach 
to the problem and forecast (inference into future) that repeals 
the classical assumptions adopted in the theory of prediction, i.e.:
– knowledge of the evolution model for the forecast variable,
– stability of the examined regularity over time,
– stability of the distribution of the model’s random compo-

nent, knowledge of the values of the model’s explanatory,
– variables within the period for which the forecast is being 

made,
– acceptability of model extrapolation beyond the variability 

area of explanatory variables observed in the ‘sample’.
In a non-ergodic system, knowledge of the future, regardless 

of how complete it is, does not provide indications sufficient to 
determine probability distributions describing the system struc-
ture based on which future events will be generated.

The article presents the results for selected grades (low-
alloy steel, about 2.5% Cr and 9% Cr steel) using the proposed 
methodology, which allows to take into account the effect of 
a structural change in the material. The theoretical form of the 
probability density function was selected to be the log-normal 
distribution, which is given by the following formula [14]:
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The distribution parameters, i.e. the mean of logarithms of 
analyzed variables (μ) and the standard deviation of logarithms 
of variables (σ), were estimated by the maximum likelihood 
method. The calculated log-normal distribution parameters 

became the basis for estimation of parameters of the linear 
regression function in the form of:

  lnyi |t = β0 + β1t + ui 

where yi – i-th observation of dependent variable, ui – i-th dis-
ruption of the random component, β0, β1 – unknown parameters, 
t – time, which was used to make a forecast for the future time 
of service [15-18].

3. Results

Microstructure

For T23 and T24 low-alloy steels and for P91 and P92 
high-chromium steels the investigations of microstructure were 
carried out both in the as-received condition and after long-term 
annealing of up to 70.000 h. The annealing was conducted at 
two temperature levels. For low-alloy steels the temperature of 
annealing was 550°C and 600°C and for P91 and P92 high-chro-
mium steels it was 600°C and 650°C. The annealing was con-
ducted with an accuracy of up to ±1°C. For the above-mentioned 
assumed material conditions 10 to 15 images of microstructure 
at a magnification of 2000×were recorded. The examples of mi-
crostructure images in the as-received condition and after long-
term annealing of 70.000 h are shown in Figures 1 through 3.

The images of recorded microstructures were used to carry 
out the quantitative analysis of the diameter of precipitates 
which occur mainly at the former austenite grain boundaries 
and bainite laths for T23 and T24 low-alloy steels and at the 
former austenite grain boundaries and martensite laths for P91 
and P92 high-chromium steels. The basic statistical measures 
that describe the data set structure are presented in Tables 1-4. 
According to the literature data supported by the results of own 
research, in these areas of the examined steel after long-term 
annealing there occur mainly M6C carbides including M23C6 
carbides for T23 and T24 low-alloy steels [19-22], while for 
P91 and P92 high-chromium steels there are M23C6 and Laves 
phase precipitates [23,24].

The detailed description of changes in the microstructure 
of the examined steels in the as-received condition and after 
prolonged exposure to temperature and stress is presented in 
[19,20,23,24].

Data analysis was performed for the examined steels with 
the aim of calculating a forecast of the probability density func-
tion. The analytical form of this function was selected to be the 
log-normal distribution [25]. It has two parameters: expected 
value and dispersion, which were estimated from the data col-
lected. On this basis, the regression function parameters were 
estimated. Then the levels of the expected value and dispersion 
were calculated for the moment the forecast applied to. It has 
allowed the forecast probability density to be estimated.

The calculated log-normal distribution parameters became 
the basis for estimation of parameters of the linear regression 
function, which was used to develop a forecast for longer times 
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a) b) 

c) d) 

Fig. 1. Microstructure of the examined steels in the as-received condition: a) T23, b) T24, c) P91, d) P92, SEM

a) b) 

c) d) 

Fig. 2. Microstructure of the examined steels after 70.000 h annealing: a) T23, b) T24 at 550°C, c) P91, d) P92 at 600°C, SEM
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a) b) 

c) d) 

Fig. 3. Microstructure of the examined steels after 70,000 h annealing: a) T23, b) T24 at 600°C, c) P91, d) P92 at 650°C, SEM

of annealing. The estimated levels of the mean of logarithms of 
analyzed variables (μ) and the standard deviation of logarithms 
of variables (σ) for the examined steel are shown in Table 5. 
They became the basis for estimation of parameters of the re-
gression function, which was then used to calculate a forecast 

of these parameters for specified time of service. Knowing these 
forecasts, the probability density functions were estimated for 
log-normal distribution at given moments. These functions are 
shown in the figures. Thus, changes in the microstructure were 
described using the probability density functions.

TABLE 1
Statistical measures describing the data set structure for T23 steel

Material condition Average St. dev. Var. Coeff. Skewness Kurtosis Quart. 1 25% Median 50% Quart. 2 75%
550°C/103h 0.379 0.127 33.5% 1.320 5.07 0.285 0.349 0.443
550°C/104h 0.355 0.161 45.4% 2.560 12.05 0.263 0.315 0.401

550°C/7×104h 0.387 0.134 34.6% 1.333 5.55 0.285 0.363 0.452
600°C/103h 0.419 0.146 34.8% 1.168 4.48 0.312 0.385 0.488
600°C/104h 0.430 0.144 33.5% 1.176 4.92 0.334 0.396 0.492

600°C/7×104h 0.557 0.187 33.6% 1.544 5.53 0.423 0.508 0.633
550°C/103h 0.661 0.245 37.1% 1.075 4.05 0.469 0.607 0.803

TABLE 2
Statistical measures describing the data set structure for T24 steel

Material condition Average St. dev. Var. Coeff. Skewness Kurtosis Quart. 1 25% Median 50% Quart. 2 75%
As-received 0.159 0.061 38.7% 1.069 3.540 0.110 0.143 0.191
550°C/103h 0.175 0.064 36.6% 0.639 3.004 0.127 0.163 0.216
550°C/104h 0.193 0.078 40.4% 0.788 3.551 0.135 0.180 0.243

550°C/7×104h 0.220 0.095 43.2% 0.887 3.594 0.142 0.201 0.278
600°C/103h 0.193 0.080 41.4% 1.092 3.992 0.127 0.174 0.234
600°C/104h 0.230 0.085 37.0% 1.489 5.332 0.172 0.207 0.269

600°C/7×104h 0.271 0.095 35.1% 1.260 5.169 0.202 0.257 0.319
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TABLE 5

Calculated log-normal distribution parameters for the examined steels

T23 steel
As-received condition 550°C/103h 550°C/104h 550°C/7×104h 600°C/103h 600°C/104h 600°C/7×104h

μ –1.02 –1.11 –1.00 –0.92 –0.89 –0.63 –0.48
σ 0.30 0.37 0.32 0.33 0.32 0.29 0.35

T24 steel
As–received condition 550°C/103h 550°C/104h 550°C/7×104h 600°C/103h 600°C/104h 600°C/7×104h

μ –1.90 –1.80 –1.73 –1.60 –1.72 –1.52 –1.35
σ 0.35 0.37 0.42 0.43 0.39 0.32 0.32

P91 steel
As–received condition 600°C/103h 600°C/104h 600°C/7×104h 650°C/103h 650°C/104h 650°C/7×104h

μ –1.8302 –1.4955 –1.377 –1.222 –1.5152 –1.319 –1.089
σ 0.3777 0.3324 0.383 0.311 0.357 0.3924 0.3338

P92 steel
As–received condition 600°C/103h 600°C/104h 600°C/7×104h 650°C/103h 650°C/104h 650°C/7×104h

μ –1.78 –1.36 –1.24 –1.19 –1.25 –1.19 –1.16
σ 0.33 0.46 0.45 0.46 0.44 0.48 0.47

TABLE 3

Statistical measures describing the data set structure for P91 steel

Material condition Average St. dev. Var. Coeff. Skewness Kurtosis Quart. 1 25% Median 50% Quart. 2 75%
as-received 0.172 0.073 42.4% 1.535 6.503 0.119 0.156 0.207
600°C/103h 0.237 0.084 35.4% 1.069 3.97 0.174 0.221 0.278
600°C/104h 0.271 0.106 39.1% 0.757 2.803 0.186 0.247 0.343

600°C/7×104h 0.309 0.097 31.4% 0.854 3.695 0.238 0.289 0.361
650°C/103h 0.234 0.087 37.2% 0.991 3.705 0.168 0.211 0.289
650°C/104h 0.289 0.125 43.3% 1.409 5.291 0.196 0.255 0.351

650°C/7×104h 0.356 0.134 37.6% 1.646 7.232 0.259 0.319 0.416

TABLE 4

Statistical measures describing the data set structure for P92 steel

Material condition Average St. dev. Var. Coeff. Skewness Kurtosis Quart. 1 25% Median 50% Quart. 2 75%
As-received 0.178 0.061 34.3% 0.765 3.010 0.127 0.162 0.216
600°C/103h 0.287 0.146 50.9% 1.355 4.761 0.180 0.247 0.355
600°C/104h 0.320 0.159 49.7% 1.426 5.506 0.202 0.276 0.404

600°C/7×104h 0.337 0.166 49.3% 1.179 4.218 0.207 0.296 0.416
650°C/103h 0.316 0.155 49.1% 1.448 5.339 0.199 0.274 0.380
650°C/104h 0.342 0.185 54.1% 1.519 5.697 0.212 0.281 0.432

650°C/7×104h 0.352 0.181 51.3% 1.433 6.141 0.212 0.306 0.449

4. Conclusions

Long-term annealing of the examined steels allowed for 
the quantitative description of changes in the microstructure at 
550°C and 600°C for T23 and T24 low-alloy steels and at 600°C 
and 650°C for P91 and P92 high-chromium steels.

The quantitative analysis of selected microstructure images 
allowed to develop a database of precipitate diameters measured 
at two temperature values and in a few conditions, i.e. in the as-
received condition and following different times of long-term 
annealing. The collected results of investigations became the 
basis for performing statistical analysis of the set structure. It 
was demonstrated that the structure was changing in time, which 
was ultimately described by changes in parameters of the prob-

ability density function. The formal description was made by 
mathematical statistics methods and using the theory of forecast-
ing. The probability density function in the form of a log-normal 
distribution, described by a formula, was fit to the real average 
precipitate diameter distributions. The function parameters, i.e. 
the mean of logarithms of analyzed variables (μ) and the standard 
deviation of logarithms of variables (σ), became the basis for 
estimation of parameters of the linear regression function, which 
was used to make a forecast of average diameter of precipitates 
and their distribution for longer times of annealing.

The performed statistical analysis of the increase in size 
of precipitates at a temperature similar to temperature of long-
term service, i.e. 550°C for low-alloy steels and 600°C for 
high-chromium steels, indicates the continuous, yet very slow 



278

Fig. 4. Fit and forecast log-normal distributions of precipitate diameter in T23 steel

Fig. 5. Fit and forecast log-normal distributions of precipitate diameter in T24 steel 
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Fig. 6. Fit and forecast log-normal distributions of precipitate diameter in P91 steel 

Fig. 6. Fit and forecast log-normal distributions of precipitate diameter in P92 steel 
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growth of precipitates, whereas raising the annealing temperature 
to 600°C for low-alloy steels and 650°C for high-chromium 
steels revealed a significant increase in the growth dynamics of 
precipitates, which affects the reduction in their performance.

The calculated probability density function parameters 
(Table 5) indicate the possibility of comparing average precipi-
tate diameters and their parameters depending on the annealing 
temperature. Such a similarity makes it possible to apply, in 
evaluation of the degradation degree of materials in use, the 
forecast by analogy methods.
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