
A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S

Volume 60 2015 Issue 1

DOI: 10.1515/amm-2015-0037

K. KONOPKA∗, K. MIŁKOWSKA-PISZCZEK∗, L. TRĘBACZ∗, J. FALKUS∗

IMPROVING EFFICIENCY OF CCS NUMERICAL SIMULATIONS THROUGH USE OF PARALLEL PROCESSING

POPRAWA WYDAJNOŚCI OBLICZEŃ NUMERYCZNYCH SYMULACJI COS POPRZEZ WYKORZYSTANIE PRZETWARZANIA
RÓWNOLEGŁEGO

The study presents the findings of research concerning the possibilities for application of parallel processing in order
to reduce the computing time of numerical simulations of the steel continuous casting process. The computing efficiency for
a CCS model covering the mould and a strand fragment was analysed. The calculations were performed with the ProCAST
software package using the finite element method. Two computing environments were used: the PL-Grid infrastructure and
cloud computing platform.

Keywords: continuous casting of steel, efficiency of numerical calculations, numerical modelling, ProCAST

W pracy przedstawiono wyniki badań dotyczących możliwości zastosowania przetwarzania równoległego w celu skrócenia
czasu trwania obliczeń numerycznych symulacji procesu ciągłego odlewania stali. Przeanalizowano wydajność obliczeń dla
modelu COS obejmującego krystalizator i fragment pasma. Obliczenia przeprowadzono przy pomocy pakietu oprogramowania
ProCAST w oparciu o metodę elementów skończonych. Wykorzystano dwa środowiska obliczeniowe: infrastrukturę PL-Grid
i chmurę obliczeniową.

1. Introduction

Numerical modelling of production processes allows an
improvement in quality of the final product, as well as an
increase in efficiency and a reduction of the process failure
frequency. For the continuous steel casting process the mod-
elling of the temperature field is key. Using numerical models
in industrial practice is time-consuming and often requires
that a number of simulations are carried out with different
sets of boundary conditions, initial conditions and material
parameters – taking up valuable time [1].

Thanks to progress in computer science, in particular in
the design of more and more efficient processors multi-core
computing units are commonly applied, allowing simultaneous
operation of several programs. This paper presents an analy-
sis of the possibilities of using of multiple processor cores
for conducting numerical simulations of the continuous steel
casting process. Shortening computing time is particularly im-
portant for verification of the model formulated, also at the
stage of the production process optimisation using the created
numerical models.

2. Optimisation of the computing time of numerical
simulations

Three basic approaches allowing us to shorten the com-
puting time of numerical simulations using the finite element
method can be distinguish; these are:

– mathematical model optimisation
– solver source code optimisation
– parallel and distributed processing.
Each of these methods has its advantages and disadvantages
and can be potentially applied at a different stage of the prob-
lem solving process.

2.1. Mathematical model optimisation

A mathematical model can be optimised by selecting the
type and size of finite elements used, so that the obtained
solution has the maximum accuracy and at the same time as
few elements are used for the construction of the model as
possible. Minimisation of the finite element number translates
into a less complex system of equations that are solved by
the solver in each iteration. One of the methods applied for
numerical simulations of processes with intensive heat trans-
fer is finite element mesh refinement in a place where a high
gradient of temperature is expected [2, 3]. The mathematical
model must be optimised already at the stage of its construc-
tion. This optimisation method has a drawback, which is its
direct influence on the accuracy of the solution obtained –
in particular the application of finite elements which are too
large often results in an increase in numerical errors [4]. The
next drawback of such a solution is the need to carry out
verification after each implemented modification of a mathe-
matical model; this is time-consuming, particularly in the case
of complicated numerical simulations.

∗ AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, AL. A. MICKIEWICZA 30, 30-059 KRAKÓW, POLAND



236

2.2. Solver source code optimisation

The second of the above-mentioned approaches is only
possible for those software packages in which the source code
is available. It concerns particularly dedicated software and
packages made available under a number of licences from
the Open Source group. The following may be presented as
examples of methods of solver source code optimisation ap-
plied in practice - the use of a set of extensions of processor
instructions accelerating operations on matrices and vectors,
or the use of FORTRAN programming language, which was
designed particularly taking into account the efficiency of the
compiled code. The necessity of accessing the solver source
code should be considered a disadvantage of this method. We
need to emphasise that for this optimisation method the en-
hancement of solver efficiency largely depends on the quality
of solutions implemented by the user.

2.3. Parallel processing

Parallel processing means executing more than one in-
struction within a specific time unit. In practice, parallel
processing is processing that uses more than one processor
(or a processor core for multi-core processors) simultaneously
for performing numerical computing. The applied processing
units (cores) may be located within the same computer system
– Symmetric Multi Processing (SMP) or within different com-
puter systems – Distributed Memory Processing (DMP). To
enable more than one processor core to be used during com-
puting the solver must make such functionality available. In
particular an algorithm for breaking down a task into smaller
sub-tasks is necessary. Each of the sub-tasks may be assigned
to a different processor (processor core), whereas for distrib-
uted computing,a communication method between individual
processes run on various computer systems is needed. The
commercially available computer applications for the mod-
elling of crystallisation processes are mostly based on the
Finite Element Method [5, 6], the FEM can also be used
for modelling microstructure and heat treatment process [7].
There are a few systems in the market for modelling the con-
tinuous casting of steel:
– ProCAST (ESI) for Windows and Linux OS [8],
– THERCAST (Transvalor) for Windows and Linux OS

[9,10,],
– FLOW-3D Cast (Flow Science Inc.) for Windows OS [11],
– CC Master (Expresslab) [12].
Only the first two packages enable calculations to be per-
formed on a number of processors/machines.

3. Construction of a CCS numerical model

A 3D model of a mould with a height of 900 mm and
a wall thickness of 40 mm, was designed with SolidWorks
software. Filling the mould with liquid steel was assumed at a
level of 850 mm. A strand with an arc radius of 10.5 m, and
dimensions of 220×1100 mm, and a length of ca. 0.5 m was
designed.

A mesh of 3D finite elements was applied onto the mould
and the strand. The mesh contains tetrahedral elements with
an average size of 10 mm. In addition, to properly reflect the
heat transfer process in the mould – mostly the shell forma-
tion process – two layers of elements with an average size of
5 mm were assumed in the area of contact of the strand with

the mould wall and along the whole length of the strand. The
3D element mesh for this model has about 240,000 tetrahedral
elements of various sizes. For individual strand fragments the
finite element size in the mesh varies from 5 mm to 20 mm.
The most dense mesh is located in the area of the mould and
directly under the mould. The model of mould and strand is
presented in Fig. 1.

Fig. 1. FEM model

3.1. Boundary and initial conditions

A description the heat transfer model in the continuous
steel casting process is a complex task as all three mechanisms
of heat transfer occur within this process. The temperature
field may be calculated with a numerical model of the steel
continuous casting process by solving the generalised Fourier
equation. The solution of the Fourier equation should meet
those boundary conditions declared on the cast strand surface
[13,14]. The surfaces for which boundary conditions were in-
troduced were broken down into four groups:
1. Contact of the solidifying strand surface with the inner

side of the mould
2. The outer side of the mould
3. The surface of the liquid steel meniscus
4. The secondary cooling zone

In the formulated model, heat transfer between the cast
strand and the mould surfaces is performed through the gap.
The heat transfer area in the mould is divided into two zones.
In the first zone no presence of a gaseous gap is assumed; the
whole space between the strand and the mould is filled with
the mould powder. As a result of metal contraction, a gaseous
gap develops at a certain distance from the meniscus. This
gap separates the mould powder layer from the mould surface,
additionally insulating the strand. In this study, the maximum
value of the heat transfer coefficient of 1600W/m−2K was as-
sumed. A change in the value of the heat transfer coefficient
is related to the assumed model of air gap formation.

The outer side of the mould is cooled with water flowing
through channels. Heat is transferred by forced convection.
Due to the way heat is absorbed by water flowing through the
channel, it is hard to determine the heat transfer coefficient
for the mould channels according to the available equations.
To find the Nusselt number, the equation (1) was chosen

Nu = 0.021Re0.8
0.43
Pr
w

(
PrW
PrK

)0.25 (1)



237

where: index w – for the mean water temperature in a channel;
index k – for the strand surface temperature

In order to compute the mean heat transfer coefficient,
the following equation (2) was used for the outer side of the
mold:

αW =
Nuλw

dk
xk (2)

where Nu is the Nusselt number; λw is the thermal con-
ductivity for the cooling water / W/mK; xk is the share of
water-cooled mould area; dk is the cooling channel diameter
/ mm. The heat transfer coefficient was calculated at 24 000
W/m2K.

After leaving the mould, the strand surface is cooled with
a water spray and in the air. The heat flux carried away from
the surface of the cooling cast strand is proportional to the
temperature difference of the strand surface and the cooling
medium. If the solidifying cast strand surface temperature is
unknown, a simplified formula (3) may be applied, allowing
determinationof the heat transfer coefficient:

αspray = 10v + (107 + 0, 688v)w (3)

where v is the water drop velocity /m/s; w is the water flux
density / dm3/m2s. For the secondary cooling zone, based on
the numerical values of water flux density, a set of heat transfer
coefficients was calculated for each of the spray zones.

4. Computing variants and computing environments

In order to determine the possibilities for using paral-
lel processing to compute the temperature distribution in the
whole volume of the cast strand, a number of simulations
were performed using the prepared model. The number of
simulation iterations was set at 4000, which allowed all tested
variants to reach a steady state. At the same time it enabled an
acceptable computing time to be maintained; this was key due
to the necessity of repeating the measurement several times
in order to eliminate the impact of external factors, such as
the loading of computing resources with other tasks executed
by e.g. the operating system. The calculation efficiency was
verified for two environments: the PL-Grid grid environment
and the cloud computing based on the XenServer 6.2 built
for the needs of the research. For the grid platform, measure-
ments were made for 1, 2, 4 and 8 processor cores. For the
cloud computing, measurements were made for 1, 2 and 4
cores; measurements for 8 cores were not possible because of
the hardware configuration of the workstations comprising the
cloud. In both cases the 64-bit solver version was used.

4.1. PL-Grid environment

The first of the tested computing environments was the
PL-Grid platform. The system consists of computing clus-
ters located in a number of research units in Poland. Each
of the units make a few hundred computing nodes with di-
verse hardware configurations available for the needs of the
PL-Grid platform users. The users may conduct computing by
using software packages installed on the platform, dedicated,
area-oriented computing services and by running dedicated
software packages. An example of an area-oriented comput-
ing service is a solution implemented by the authors which
also uses the ProCast package solver and allows running sim-
ulations of the steel continuous casting process. As part of

the PL-Grid platform it is also possible to use specialised sys-
tems, allowing one to conduct General-Purpose Computing
on Graphic Processor Units (GPGPU) and using the vSMP
technology that allows hardware resources of a few servers
to be aggregated. This solution is particularly useful for run-
ning applications with especially high requirements in terms
of operating memory and processor cores [15]. During the
research the solver of the ProCAST 2013.5 package was used
in the Linux version. The input files were prepared with a
preprocessor in the Microsoft Windows version.

4.2. Cloud computing

The other one of the tested solutions was a computer
cloud, configured especially for the needs of the research. So-
lutions based on cloud computing use the virtualization tech-
nique, which allows the creation of many virtual computers –
called virtual machines – within a single, physical computer.
Physical computers comprising a cloud are called nodes, while
one of the basic features is the possibility of smooth migration
(transfer) of virtual machines between the individual cloud
nodes without the need to interrupt their operation. The im-
plemented cloud comprised four computers, one of them was
the pool master, the next one provided disc space for the data
storage, and the other two performed the role of computing
nodes, whereon the computing was performed. The communi-
cation between the cloud computers was provided by a 1Gb/s
Ethernet network. The XenServer 6.2 software was used for
construction of the cloud (the pool master and the computing
nodes) and Linux Debian 7.2 for the data storage node. The
selection of software was dictated by its availability under the
OpenSource license. The computing was performed within a
single virtual machine, wherein the Microsoft Windows Server
2008 R2 system and the ProCAST 2013.5 package in the ver-
sion dedicated for this system were installed. The simulation
was prepared beforehand with a ProCAST package preproces-
sor and then copied to the virtual machine hard drive.

5. Results

Averaged computation times for each of the variants are
presented below. The results for the PL-Grid platform and the
Linux system solver are presented in Table 1. Computation
times for the solution using the cloud and the Microsoft Win-
dows system solver are shown in Table 2. The results in the
form of graphs are presented in Fig. 2 and 3 respectively. It
should be emphasised, that because of the different hardware
configuration of machines comprising both platforms and two
different operating systems installed, the results should not be
compared directly with each other.

TABLE 1
PL-Grid infrastructure – average computation time

1 CPU core 2 CPU cores 4 CPU cores 8 CPU cores
Computation

time [s] 10936 6400 3426 2101

TABLE 2
Cloud computing – average computation time

1 CPU core 2 CPU cores 4 CPU cores

Computation time [s] 4367 2371 1541



238

Fig. 2. Average computation time, PL-Grid infrastructure

Fig. 3. Average computation time, cloud computing

6. Summary and conclusions

As part of the research, a mathematical model covering
the mould and a fragment of the strand cast was created and
next it was used to carry out efficiency tests with various num-
bers of processor cores. It follows from the analysis of data in
Tables 1 and 2 that using many processor cores for carrying
out numerical calculations can shorten the computing time.
The improvement of efficiency was observed both for the grid
platform using the Linux system and the dedicated version of
the ProCast package solver, as well as for the solution that used
virtualisation and a Microsoft operating system with an appro-
priate solver version. In both cases an increase in the number
of cores used lead to a similar reduction of computing time in
terms of percentage, allowing us to state that the tested plat-
forms are equally suitable for conducting parallel computing.
The non-linear nature of the trend line on the graphs presented
in Fig. 2 and 3 indicates that the use of more and more proces-
sors for computing results in decreasing efficiency. This is also
caused by the growing communication overheads arising from
the necessity of information exchange between the individual
solver processes. For the created mathematical model the use
of four processor cores is a good compromise between the ob-
tained platform efficiency and the financial outlays necessary
to build this platform.

Acknowledgements

This research was supported in part by PL-Grid Infrastructure.
This research was supported through statutory funds of the AGH

UST project no. 11.11.110.293.

REFERENCES

[1] M. Rywotycki, K. Miłkowska-Piszczek, L. Trebacz, Identifi-
cation of the boundary conditions in the continuous casting of
steel, Archives of Metallurgy and Materials 57, 385-393 (2012).

[2] A. Buczek, A.Burbelko, P. Drożdż, M. Dziarmagows-
ki, J. Falkus, M.Karbowniczek, Tomasz Kargul, K.
Miłkowska-Piszczek, M. Rywotycki, K. Sołek, W. Ślęzak,
T. Telejko, L. Trębacz, E. Wielgosz, Modelowanie procesu
ciągłego odlewania stali – monografia, Radom 2012.

[3] K. Miłkowska-Piszczek, PhDThesis: Opracowanie i zas-
tosowanie numerycznego modelu procesu COS do wyznaczenia
technologicznych parametrów odlewania stali S235, AGH Uni-
versity of Science and Technology, Kraków 2013.

[4] W. Rachowicz, Metoda elementów skończonych i brzegowych.
Podstawy kontroli błędu i adaptacji, Politechnika Krakowska,
Kraków 2012.

[5] O.C. Zienkiewicz, R.L Taylor, J.Z. Zhu, The Finite Ele-
ment Method: Its Basis and Fundamentals. 6th Ed. Oxford:
Butterworth-Heinemann, 2005.

[6] T.R. Hsu, The Finite Element Method in Thermomechanics,
Allen and Unwin, London 1986.

[7] L. Madej, H. Paul, L. Trebacz, W. Wajda, M. Pietrzyk, Multi
billet extrusion technology for manufacturing bi-layered com-
ponents, CIRP Annals – Manufacturing Technology 61, 1,
235-238 (2012).

[8] Procast software, [on-line], https://www.esi-group.com/
software-services, (21.05.2014).

[9] THERCAST software, [on-line], http://www.transvalor.com/,
(21.05.2014).

[10] K. Vollrath, Casting simulation using numerical processing be-
comes more important in steel mills, Stahl und Eisen 133, 45-53
(2013).

[11] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS
foam decomposition in the lost foam casting process. J. Mater.
Process. Technol. 182, 333-342 (2007).

[12] CC Master, [on-line], http://www.expresslab.co.kr/home/products
/?view=CC-Master, (21.05.2014).

[13] K. Miłkowska-Piszczek, J. Falkus, Calculation of the boundary
conditions in the continuous casting of steel process, Metalurgi-
ja 53, 4, 571-573 (2014).

[14] K. Miłkowska-Piszczek, M. Korolczuk-Hejnak, An analysis
of the influence of viscosity on the numerical simulation of
temperature distribution, as demonstrated by the CC process,
Archives of Metallurgy and Materials 58, 4, 1267-1274 (2013).

[15] PL-Grid Oferta dla użytkowników, [on-line], http://
www.plgrid.pl/oferta/, (21.05.2014).

Received: 20 March 2014.


