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EMPIRICAL FORMULAE FOR THE CALCULATION OF AUSTENITE SUPERCOOLED TRANSFORMATION TEMPERATURES

ZALEŻNOŚCI EMPIRYCZNE DO OBLICZANIA TEMPERATURY PRZEMIAN AUSTENITU PRZECHŁODZONEGO

The paper presents empirical formulae for the calculation of austenite supercooled transformation temperatures, basing
on the chemical composition, austenitising temperature and cooling rate. The multiple regression method was used. Four
equations were established allowing to calculate temperature of the start area of ferrite, perlite, bainite and martensite at the
given cooling rate. The calculation results obtained do not allow to determine the cooling rate range of ferritic, pearlitic,
bainitic and martensite transformations. Classifiers based on logistic regression or neural network were established to solve
this problem.
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W pracy przedstawiono zależności empiryczne do obliczania temperatury przemian austenitu przechłodzonego na pod-
stawie składu chemicznego, temperatury austenityzowania i szybkości chłodzenia. Zastosowano metodę regresji wielorakiej.
Opracowano cztery równania, które umożliwiają obliczenie temperatury początku przemiany ferrytycznej, perlitycznej, baini-
tycznej i martenzytycznej. Wyniki obliczeń nie pozwalają na wyznaczenie zakresu szybkości chłodzenia, dla których występują
przemiany ferrytyczna, perlityczna, bainityczna i martenzytyczna. Do rozwiązania problemu opracowano klasyfikatory stosując
regresję logistyczną lub sztuczne sieci neuronowe.

1. Introduction

Computer modelling make improvement of engineering
materials properties possible, as well as prediction of their
properties, with the significant reduction of expenditures and
time necessary for their investigation. Calculation methods
provide an alternative to experimental measurement in pro-
viding the material data required for heat treatment process
simulation [1-10].

The continuous cooling transformation (CCT) diagrams,
containing the quantitative data pertaining to the dependence
of steel structure and hardness on temperature and time of
the supercooled austenite transformations, are used for de-
termination of the structure and hardness of the quenched,
fully annealed or normalized steels. The knowledge of kinet-
ics of supercooled austenite transformations occurring during
steel cooling continuously from the austenitisation tempera-
ture, as shown in CCT diagrams, is underlying the selection
of parameters of many steel heat treatment operations. The
position and shape of curves of supercooled austenite trans-
formations applied onto CCT diagrams depend most of all
on the chemical composition of steel, austenite grain size,
austenite homogenisation degree, temperature and austenitisa-
tion time. Fluctuations of the chemical composition of steel,
allowable even within the same steel grade, and also changes
of the austenitising conditions cause that published in cat-

alogues CCT diagrams cannot provide reliable information
on austenite transformations during continuous cooling. The
dilatometric method supplemented with metallographic inves-
tigations for different samples and their hardness measure-
ments are usually used for establishing a CCT diagrams. The
measurements are time consuming and require expensive re-
search apparatuses [11, 12].

The attempts to employ computer techniques for solving
this problem are connected with calculation of the characteris-
tic transformation points or curves of the diagram, based on a
mathematical model, empirical formulae or using the artificial
intelligence methods.

A method of modelling the supercooled austenite trans-
formations with the use of neural networks has been described
in detail in the publications [13-16].The elaborated calculation
models were used in the custom software for the graphical pre-
sentation of a CCT diagram [17]. Another example of hybrid
method application for CCT diagrams calculation is a model
presented in [18] that employs artificial neural networks and
multiple regression.

The paper presents the methodology of modelling using
the regression method of the relationship between the chemi-
cal composition and the supercooled austenite transformations
temperatures of the steel cooling from the austenitising tem-
perature.
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2. Material and method

The preparation of a representative set of empirical da-
ta has had a important significance for preparing a method of
calculating supercooled austenite transformations start temper-
atures. The data set was developed on the basis of on literature
data, including chemical compositions, austenitising temper-
ature and the CCT diagrams for structural and engineering
steels. The obtained curves were worked out, assuming mass
fractions of the alloying elements as the criterion. A range
of the accepted mass concentrations of the elements has been
presented in Table 1. The data set consisted of 500 CCT dia-
grams. The number of cases for particular data sets has been
presented in Table 2.

TABLE 1
Ranges of mass concentrations of elements

R
an

ge Mass fractions of elements, %

C Mn Si Cr Ni Mo V Cu

min 0.21 0.28 0.13 0 0 0 0 0

max 0.68 2.0 1.9 2.5 3.85 1.05 0.38 0.38

TABLE 2
Number of cases in data sets

Data set

Fs Ps Bs Ms

Regression 1827 1460 1930 1688

Classification 2925

Based on the analysis of different forms, general formu-
lae embracing the influence of the chemical composition and
optionally the austenitising temperature as well as the cooling
rate on the temperature transformations value, including the
interrelations accounted for synergy of alloy elements’ inter-
actions, the general forms of equation have been accepted:

Ts(◦C) = a0 + a1 · C + a2 ·Mn + a3 · Si + a4 · Cr + a5·
Ni + a6 ·Mo + a7 · V + a8 · Cu + a9 · TA + a10 · vR

(1)

where:
C, Mn, Cr, Ni, Mo, V – mass fractions of the alloying

elements;
a0, a1.., a12 – coefficients calculated with the regression

analysis;
TA – austenitising temperature, ◦C;
VR – cooling rate, ◦C/min.
Created, with the help of multiple regression, formulae

do not allow for determining the range of the cooling rate
for which ferritic, pearlitic, bainitic and martensite transfor-
mations occur. That is why, the values of the cooling rate,
for which ferritic, pearlitic, bainitic and martensite transfor-
mations take place, have been determined with the help of the
classifiers, worked out using the logistic regression method.
A classifier had to be developed, to obtain this information,
using as input data the chemical composition, cooling rate and

austenitising temperature. The problem amounts to the calcu-
lation of the highest cooling rate value for which a ferrite,
pearlite and bainite occur and the lowest cooling rate value
for which bainite and martensite occur in the structure of the
steel. The range of cooling rate for particular transformations
and the type of structural components existing in steel after
continuous cooling with the set cooling rate are determined
as a result of the classification made.

The general forms of formulae used for forecasting oc-
currences of the particular structural constituents in steel for
assumed cooling rate are presented in equations (2)-(3).

PX = exp(KX)/{1 + exp(KX)} (2)

KX = b0X + b1X · C + b2X ·Mn + b4X · Si + b4X · Cr + b5X·
Ni + b6X ·Mo + b7X · V + b8X · Cu + b9X · TA + b10X · vR

(3)
where:

C, Mn, Si, Cr, Ni, Mo, V, Cu – mass fractions of the
alloying elements;

TA – austenitising temperature, ◦C;
vR – cooling rate, ◦C/min;
b0X , b1X .., b12 – coefficients calculated with the logistic

regression analysis;
X=F (ferrite), P (pearlite), B (bainite), M (martensite).
Occurrence of transformations have been predicted based

on the value of the variable Px. The transformation occurs if
the calculated Px value is higher or equal to 0.5.

3. Calculation result

Evaluation of the worked out empirical formulae has been
made on the basis of the analysis of the mean absolute error
value, the standard deviation of the error, ratio of standard
deviations of errors and data, which for the ideal forecasts
assumes value of 0, as well as the Pearson’s correlation coef-
ficient. The formulae describing the influence of the chemical
composition on the temperature of the beginning of transfor-
mations in the function of the cooling rate, worked out using
the multiple regression, are presented in equations (4)-(7). The
assessment of the significance of the regression coefficients
are presented in Tables 3-6. Significance level was specified
of 0.05. The input variable is statistically significant if the
p-value is less than 0.05. The mean error values, the standard
deviation of the error and the correlation coefficient for the
particular transformations temperatures are given in Table 8.

Fs = 857 − 257 · C − 69 ·Mn + 23 · Si − 20 · Cr − 38 · Ni−
20 ·Mo + 34 · V + 26 · Cu + 0.07 · TA − 17 · v0.25

R
(4)

Ps = 780−30·C−65·Mn+24·Si−29·Ni−26·Mo−21·Cu−17·v0.25
R
(5)

Bs = 675 − 212 · C − 57 ·Mn − 17 · Si − 49 · Cr − 29 · Ni−
60 ·Mo − 94 · V + 0.056 · TA − 1.6 · v0.25

R
(6)

Ms = 411−328·C−13·Mn−3·Cr−9·Ni−16·Mo+34·Cu+6.7·v0.25
R
(7)

Classifiers used for forecasting occurrences of the particu-
lar structural constituents in steel are presented in equations
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(8)-(13). The values of the coefficient of the correct classi-
fications for the particular transformations temperatures are
presented in Table 8.

TABLE 3
The assessment of significance of regression coefficients for the

ferritic transformation temperature

Coefficients Standard Error t Stat p-value

Intercept 857.1805 12.69909 67.49935 0

C -257.512 6.062584 -42.4757 2.4E-274

Mn -68.5837 2.196809 -31.2197 1.2E-171

Si 22.78437 2.158293 10.55666 2.52E-25

Cr -19.8011 1.35543 -14.6087 8.79E-46

Ni -37.8265 0.820115 -46.1234 4.3E-308

Mo -20.271 3.790368 -5.34803 1E-07

V 33.7432 11.15142 3.02591 0.002514

Cu 26.47218 7.864241 3.366146 0.000778

TA 0.074651 0.01348 5.537811 3.51E-08

V0.25
R -17.1635 0.352848 -48.6426 0

TABLE 4
The assessment of significance of regression coefficients for the

pearlitic transformation temperature

Coefficients Standard Error t Stat p-value

Intercept 779.7969 3.675802 212.1433 0

C -29.7173 5.402673 -5.50049 4.47E-08

Mn -65.1811 2.214819 -29.4295 1.1E-149

Si 23.78078 1.954424 12.16766 1.66E-32

Ni -29.2803 0.936806 -31.2554 2E-164

Mo -25.9124 4.296364 -6.03124 2.06E-09

Cu -21.1773 8.495378 -2.4928 0.012785

V0.25
R -17.4238 0.48057 -36.2566 1.7E-205

The logistic regression appeared to be a very useless
method for calculating the range of cooling rate for bainitic
transformations. The accepted for the assessment of the
worked out formulae coefficient of correct classification indi-
cated the considerable difference between the calculated and
empirical values (Table 8). The neural networks, applied for
the calculation of these range, ensure greater correctness of
these calculations. The details were presented in papers [18].

PF = exp(KF)/{1 + exp(KF)} (8)

KF = 20 − 17 · C − 2.1 ·Mn + 1.03 · Si − 2.4 · Cr − 1.6 · Ni−
5.6 ·Mo + 1.6 · V + 4.2 · Cu − 0.005 · TA − 1.17 · v0.25

R
(9)

PP = exp(KP)/{1 + exp(KP)} (10)

KP = 14 − 1.93 · C − 2.7 ·Mn + 0.3 · Si − 2.2 · Cr − 1.5 · Ni−
7.2 ·Mo + 2.7 · V + 1.1 · Cu − 0.004 · TA − 1.33 · v0.25

R
(11)

PM = exp(KM)/{1 + exp(KM)} (12)

KM = −17 + 3.9 · C + 2.2 ·Mn + 0.4 · Si + 2.4 · Cr + 1.2 · Ni+
0.9 ·Mo − 0.04 · V + 3 · Cu + 0.009 · TA + v0.25

R
(13)

TABLE 5
The assessment of significance of regression coefficients for the

bainitic transformation temperature

Coefficients Standard Error t Stat p-value

Intercept 675.0608 16.49892 40.91547 1.1E-263

C -212.146 7.945826 -26.6991 8E-134

Mn -56.827 3.486541 -16.299 4.86E-56

Si -17.1918 3.611832 -4.75987 2.08E-06

Cr -48.7544 1.929019 -25.2742 6.6E-122

Ni -28.8722 1.139604 -25.3353 2.1E-122

Mo -60.5141 4.727671 -12.8 4.67E-36

V -93.9168 14.52657 -6.46518 1.28E-10

TA 0.056393 0.016837 3.349301 0.000826

V0.25
R -1.65855 0.409525 -4.04993 5.33E-05

TABLE 6
The assessment of significance of regression coefficients for the

martensitic transformation temperature

Coefficients Standard Error t Stat p-value

Intercept 410.6985 4.495101 91.3658 0

C -327.886 5.241376 -62.5572 0

Mn -12.7126 2.549301 -4.9867 6.78E-07

Cr -2.51486 1.414075 -1.77845 0.075511

Ni -8.56036 0.716145 -11.9534 1.15E-31

Mo -16.3256 3.179085 -5.13533 3.14E-07

Cu 34.45196 8.215225 4.193673 2.89E-05

V0.25
R 6.692919 0.223038 30.00796 8.9E-159

TABLE 7
Error values and correlation coefficients for the temperatures of the

beginning of transformations

Tempe-
rature

Error E j,
◦C

Standard
deviation of
the error, ◦C

Ratio of
standard

deviations

Pearson’s
correlation
coefficient

Fs 19.5 17.4 0.33 0.86

Ps 19.4 16.3 0.38 0.80

Bs 30.6 23.0 0.41 0.72

Ms 20.5 17.2 0.30 0.88

The comparative plots for the experimental and calcu-
lated temperature values of the particular transformations are
presented in Fig. 1. To verify the model worked out, the exper-
imental CCT diagrams were compared with curves calculated
using equations (4)-(13). Examples of the calculated values of
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the transformations’ temperature along with the experimental
CCT diagrams are presented in Figs. 2-3.

TABLE 8
Quality assessment coefficients for models, used as classifiers for
determining the types of occurring transformations for assumed

cooling rate

Transformation areas
Coefficient of

correct classifications, %

Ferritic 87

Pearlitic 87

Bainitic 60

Martensitic 84

Fig. 1. Comparison of the experimental temperatures with values
calculated using the regression model

Fig. 2. CCT diagram for steel with concentrations: 0.43% C, 0.66%
Mn, 0.33% Si, 0.74%Cr, 1.4% Ni, 0.2% Mo, austenitised at temper-
ature of 860◦C: a) experimental, b) calculated

4. Summary

The model worked out makes it possible to calculate
austenite supercooled transformation start temperatures for the
steel with a known chemical composition. The applied numer-
ical verification of the worked out formulae allows to state that

in the range of the assumed mass concentrations of the alloy
elements, the proposed method makes also possible to make
some parts of CCT diagrams for the newly worked out types of
steel grades. The presented model facilitates the analysis of the
interaction of the chemical composition on the start transfor-
mations temperature of the steel cooled from the austenitising
temperature. The austenite grain size and the time of austeni-
tising, have not been taken into account because of the lack
of the information in the majority of CCT diagrams used for
preparing the data set.

Fig. 3. CCT diagram for steel with concentrations: 0.36% C, 0.49%
Mn, 0.25% Si, 1.54%Cr, 0.21% Ni, 0.03% Mo, 0.16% Cu, austeni-
tised at temperature of 860◦C: a) experimental, b) calculated

A model describing supercooled austenite star transfor-
mations in the function of alloying elements of steel enables
to solve an inverse task consisting of calculating the chem-
ical compositions of steel with the required form of a CCT
diagrams.
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hardness prediction of magnesium alloys using artificial neural
networks applications, Journal of Achievements in Materials
and Manufacturing Engineering 26(2), 187-190 (2008).

[5] L.A. Dobrzański, T. Tański, J. Trzaska, Optimization of heat
treatment conditions of magnesium cast alloys, Materials Sci-
ence Forum 638, 1488-1493 (2010).

[6] W. Sitek, J. Trzaska, L.A. Dobrzański, Modified Tartagli
method for calculation of Jominy hardenability curve, Mate-
rials Science Forum 575-578, 892-897 (2008).

[7] W. Sitek, J. Trzaska, Hybrid modelling methods in materials
science – selected examples, Journal of Achievements in Ma-
terials and Manufacturing Engineering 54(1), 93-102 (2012).

[8] J. Trzaska, L.A. Dobrzański, Application of neural networks
for selection of steel with the assumed hardness after cooling
from the austenitising temperature, Journal of Achievements in
Materials and Manufacturing Engineering 16, 145-150 (2006).



185

[9] J. Trzaska, Calculation of the steel hardness after continuous
cooling, Archives of Materials Science and Engineering 61(2),
87-92 (2013).

[10] J. Trzaska, L.A. Dobrzański, Application of neural networks for
designing the chemical composition of steel with the assumed
hardness after cooling from the austenitising temperature, Jour-
nal of Materials Processing Technology 164-165, 1637-1643
(2005).

[11] J.C. Zhao, M.R. Notis, Continuous cooling transformation
kinetics versus isothermal transformation kinetics of steels:
a phenomenological rationalization of experimental observa-
tions, Materials Science and Engineering R15, 135-207 (1995).

[12] J. Trzaska, A. Jagiełło, L.A. Dobrzański, The calculation of
CCT diagrams for engineering steels, Archives of Materials
Science and Engineering 39(1), 13-20 (2009).

[13] L.A. Dobrzański, J. Trzaska, Application of neural network for
the prediction of continuous cooling transformation diagrams,
Computational Materials Science 30(3-4), 251-259 (2004).

[14] L.A. Dobrzański, J. Trzaska, Application of neural networks
for prediction of critical values of temperatures and time of

the supercooled austenite transformations, Journal of Materials
Processing Technology 155-156, 1950-1955 (2004).

[15] L.A. Dobrzański, J. Trzaska, Application of neural networks to
forecasting the CCT diagram, Journal of Materials Processing
Technology 157-158, 107-113 (2004).

[16] L.A. Dobrzański, J. Trzaska, Application of neural networks
for prediction of hardness and volume fractions of structural
components constructional steels cooled from the austenitis-
ing temperature, Materials Science Forum 437-438, 359-362
(2003).

[17] J. Trzaska, L.A. Dobrzański, A. Jagiełło, Computer program
for prediction steel parameters after heat treatment, Journal
of Achievements in Materials and Manufacturing Engineering
24(2), 171-174 (2007).

[18] J. Trzaska, L.A. Dobrzański, Modelling of CCT diagrams for
engineering and constructional steels, Journal of Materials
Processing Technology 192, 504-510 (2007).

Received: 20 March 2014.


