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EVENT DRIVEN CONTROL OF VIBRATORY CONVEYORS OPERATING ON THE FRAHM’S ELIMINATOR BASIS

STEROWANIE ZDARZENIOWE PRZENOŚNIKIEM WIBRACYJNYM DZIAŁAJĄCYM W OPARCIU O ELIMINATOR FRAHMA

The new, original control method of the vibratory conveyor operating on the Frahm’s dynamic eliminator basis, is presented
in the paper. The proposed method is based on the application of the control of the feed-forward controler, together with the
events detection based on the generalised likelihood ratio (GLR) algorithm. Such approach leads to the controller intervention
only when it is justified by the current process situation, (e.g. in case of an essential change of the feed mass) to enable the
stable machine operations and to limit transient states. The results are presented in a form of numerical simulations.
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W artykule przedstawiono oryginalny sposób sterowania przenośnikiem wibracyjnym, działającym w oparciu o dyna-
miczną eliminację drgań na zasadzie eliminatora Frahma. Zaproponowana metoda polega na zastosowaniu sterowania typu
feed-forward wraz z detekcją zdarzeń opartą na algorytmie sum kumulacyjnych (GLR). Podejście takie prowadzi do interwen-
cji regulatora tylko wtedy gdy jest to uzasadnione bieżącą sytuacją procesową, np. w przypadku istotnej zmiany masy nadawy,
co zapewnia stabilną pracę maszyny i ogranicza stany przejściowe. Wyniki przedstawiono w postaci symulacji numerycznych.

1. Introduction

Vibratory conveyors are utilised – usually at distances not
longer than 20 m – in metallurgical industry for continuous
transport of hot materials (furnace slag, small steel elements,
etc.), caustic substances or substances emitting gases haz-
ardous for the environment. In addition, vibratory conveyors
enable recovery of heat from the transported materials (used
later e.g. for warming furnace blowers, drying, humidifying,
etc.). They also allow transporting in closed conduits [1,2].

A negative side of vibratory conveyors is transferring
large dynamic loads on foundations. To lower dynamic re-
actions, the application of the Frahm’s dynamic eliminator [4]
in the structure of vibratory conveyors was proposed, already
in the sixties of the previous century [3]. In conveyors oper-
ating on the Frahm’s eliminator base, mr is the mass of the
conveyor trough, while mb is the mass of the frame excited
for vibrations by the excitation force: P0 sinωt (Fig. 1). The
conveyor trough is connected with the frame by leaf springs
of a coefficient of elasticity kτ satisfying the equation:

kτ = mrω
2 (1)

forming the Frahm’s eliminator. A real development of this
type of conveyors started at the beginning of the 21st century.
Thus far, conveyors or feeders were applied in industry for
transporting feed materials of small masses [5].

Fig. 1. Conveyor in the FMC Technologies [5]

A broad interest of this type of construction among pro-
ducers inspired a lot of publications related to the prob-
lem [6]. The authors analysed the conveyor response to the
assumed excitation frequency (resulting as vibroinsulating
Frahm’s damper). The author of paper [7] drew a conclu-
sion that the feed mass influences the force transmitted to
the foundation and its value has to be small if the con-
veyor is to operate properly. This thesis was challenged in
study [8].

This type of solution is not, so far, applied in metallur-
gical industry, due to a general believe that with an increase
of the feed mass a significant increase of forces transmitted to
foundations occurs. However, it was shown – in paper [8] –
that at the proper selection of parameters of the conveyor op-
erating on the Frahm’s eliminator bases, in spite of its loading
with a significant feed mass, very small values of forces trans-
mitted to foundations can be obtained, lower than in vibratory
conveyors placed on vibroinsulating frames.

∗ AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF MECHANICAL ENGINEERING AND ROBOTICS, AL. A. MICKIEWICZA 30, 30-059 KRAKÓW, POLAND

*

*   AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF ELECTRICAL ENGINEERING, AUTOMATICS, COMPUTER SCIENCE AND BIOMEDICAL ENGINEERING,  
     AL. A. MICKIEWICZA 30, 30-059 KRAKÓW, POLAND

 **AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF MECHANICAL ENGINEERING AND ROBOTICS, AL. A. MICKIEWICZA 30, 30-059 KRAKÓW, POLAND



20

Since – in this type of conveyors – a feed transferred
on the trough in a certain sense cooperates with it, the de-
pendence (1) is not valid in such system. It was proofed in
paper [8], that there is the possibility of such changing of the
excitation frequency ω in dependence on the mass of the feed
(2), to have the conveyor operating properly and transmitting
minimal forces to the foundation, regardless of a large load.

ω =

√
k f

mr + mn sin2 β
(2)

where:
mr – mass of the conveyor trough,
k f – total stiffness coefficient of leaf springs in working

direction f ,
mn – mass of the feed,
β – angle of deviation of the direction of trough vibrations

from the level.
The system enabling the control of such machines by

means of the feed-forward controller – equipped with the
events detection module based on the algorithm of cumulative
sums (GLR) – is presented in Chapter 3 of the hereby paper.

2. Mathematical model of the conveyor loaded with a feed

In order to estimate the influence of the feed on the ef-
ficiency of the reductions of forces transmitted to the founda-
tions the simulation model was developed (Fig. 2).

Fig. 2. Model of the vibratory conveyor loaded with a feed

The analysed system consists of two inertial vibrators, in
which induction motors (described by static characteristics)
excite for vibrations the frame suspended on the system of
spiral springs. The conveyor trough together with the feed [9]
is suspended on the frame by means of the leaf springs system
allowing for the relative motion of the trough and frame along
the axis s only.

The mathematic model of such system consists of the
matrix equation (3) describing the machine motion, equation
(10) describing the electromagnetic moment of drive motors,
equations (9) used for the determination of motions of suc-
cessive feed layers and dependencies (7) and (8) describing
normal and tangent interactions in between feed layers as well
as between a feed and the machine frame.

[M] · [q̈] = [Q] (3)

[M] =



mb + 2m + mr 0 m(h1 + h2) − mrhr 2me cos β · cos φ mr cos β
0 mb + 2m + mr −m(a1 + a2) + mrar 2me sin β · cos φ mr sin β

m(h1 + h2) − mrhr −m(a1 + a2) + mrar
m(h2

2 + l22 + h2
1 + l21)

+mr(h2
r + a2

r ) + Jb + Jr

me(h1 cos(β + φ)−
a1 sin(β + φ)+
h2 cos(φ − β)+
l2 sin(φ − β))

mr(a1 sin β
−h1 cos β)

2me cos β · cos φ 2me sin β · cos φ

me(h1 cos(β + φ)−
a1 sin(β + φ)+
h2 cos(φ − β)+
l2 sin(φ − β))

2me2 + 2J0 0

mr cos β mr sin β
mr(a1 sin β
−h1 cos β)

0 mr



(4)

[q̈] = [ẍ ÿ α̈ φ̈ f̈ ]T (5)

[Q] =



−2meφ̇2 sin φ · cos β − kx(x + Hα) − bx(ẋ + Hα̇) − T1(01) − T1(02) − T1(03) − T1(04) − T1(05)

meφ̇2(sin(φ − β) + cos(β + φ)) − 1
2 ky(y + l1α) − 1

2 ky(y − l2α) − 1
2 by(ẏ + l1α̇) − 1

2 by(ẏ − l2α̇) − F1(01) − F1(02) − F1(03) − F1(04) − F1(05)

−meφ̇2(h1 sin(β + φ) + l1 cos(β + φ)) + m2e2φ̇
2(−h2 sin(φ − β) + l2 cos(φ − β)) − kxH2α − kxHx − bxHẋ − bxH2α̇−

1
2 ky(y + lα)l + 1

2 ky(y − lα)l − 1
2 by(ẏ + lα̇)l + 1

2 by(ẏ − lα̇)l + (T1(01) + T1(02) + T1(03) + T1(04) + T1(05))Hr+

F1(01)(2d − ar ) + F1(02)(d − ar ) − F1(03)ar − F1(04)(d + ar ) − F1(05)(2d + ar )
2Mel − mge (sin( β + φ) + cos( φ − β))

−k f f − b f ḟ − (T1(01) + T1(02) + T1(03) + T1(04) + T1(05)) cos β − (F1(01) + F1(02) + F1(03) + F1(04) + F1(05)) sin β



(6)

where:
f – dependent co-ordinate,
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F j,( j−1,k) – normal component of the j-th layer pressure on the j−1 in the k-th column,
T j,( j− j,k) – tangent component of the j-th layer pressure on the j-1 in the k-th column,
j – indicator of the material layer, j = 0 is related to the machine frame,
k – indicator of the material layer column.

If the successive feed layers j-th and j-1 are not touching
(in the given column), then the contact force in the normal
F j,( j−1,k)and tangent T j,( j−1,k) direction – between these layers
– equals zero. Otherwise the contact force occurs in the normal
direction between layers j-th,k and j-1,k of the feed (or in
case of the first layer – between the layer and trough) and its
model is as follows [10]:

F j,( j−1.k) = (η j−1,k − η j,k)p · k·{
1 − 1−R2

2

[
1 − sgn(η j−1,k − η j,k) · sgn(η̇ j−1,k − η̇ j,k)

]} (7)

and – originated from friction – the force in the tangent di-
rection:

T j,( j−1,k) = −µF j,( j−1,k)sgn(ξ̇ j,k − ξ̇ j−1,k) (8)

Equations of motion in directions ξ and η of individual lay-
ers of a feed, with taking into account the influence of the
conveyer on lower feed layers, are of the form:

mn j,k ξ̈ = T j,( j−1,k) − T j+1,( j,k)

mn j,k η̈ = −mn j,kg + F j,( j−1,k) − F j+1,( j,k)

(9)

The moment generated by drive motors is:

Mel
2Mut(ωss − φ̇i1) · (ωss − ωut)
(ωss − ωut)2 + (ωss − φ̇i)2

(10)

where:
Mut – stalling torque of drive motors,
ωss – synchronous frequency of drive motors,
ωut – frequency of a stall of drive motors.
Simulations were performed at the following parameters:

l = 4 [m] m = 15 [kg]

l1 = 1.54[m] (variable) J0 = 0

l2 = 1.05[m] (variable) e = variable, depending on the
coefficient of throw K

h1 = 0.31[m] (variable) mr = 3700 [kg]

h2 = 1.18[m] (variable) mb = 2600 [kg]

H = 0.0 m µ = 0.4

h = 0.0 m Jk = 500 [kgm2]

Hr = 0.0 m Jr = 700 [kgm2]

ar = 0.0 m Mut = 50 [Nm]

β = 45◦ (variable) ωss = 106 [rad/s] (variable)

kx = ky = 2328000 [N/m] ωut = 15.9·2π[rad/s] (variable)

k f = 42171481 [N/m] R = 0.13

b f =
ψsks
2πφ̇ [Ns/m]

∑
mn = 800 [kg] (variable)

bx = by =
ψx,ykx,y

2πφ̇ [Ns/m] ψx,y = 0.14

ψ f = 0.09

The time-series example of the force transmitted to the
foundation is presented in Fig. 8, while Fig. 3 presents exam-
ples of vertical displacements of the successive feed layers for

the total feed mass mn = 800 kg at its dividing into 8 layers
(n = 8).

Fig. 3. Vertical displacements of the trough and eight feed layers for
the feed mass of 800 kg

3. Control

A vibratory conveyor of the Frahm’s eliminator type,
equipped with the system of the excitation frequency control,
allowing to transfer larger feed masses, would significantly
broaden the applicability range of this type of devices. Espe-
cially, as it was mentioned in the introduction, such conveyors
could be applied in metallurgy, e.g. for transporting hot slag.

However, the classic feedback loop control would be in
such case difficult for the application since it would cause the
machine destabilisation due to a highly oscillatory character of
its motion. On account of this, the implementation of the sim-
ple and the most common in industry PID controller can not
be applied. In return, an application of a feed-forward control
seems reasonable. In this control system the mass of a feed is
treated as a measurable disturbance, directly influencing the
control value, it means the excitation frequency of vibrators
(Fig. 4).

Fig. 4. Scheme of the proposed control system

The availability of the measured mass of a feed constitutes
here a problem. In industrial applications the mass of a feed
being on the conveyor trough is rather seldom measured. More
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TABLE 1
Constant components of the force and optimal frequencies for various masses of the feed

m [kg] 50 100 150 200 250 300 350

Ff [N] -1.379e03 -2.759e03 -4.139e03 -5.519e03 -6.900e03 -8.279e03 -9.659e03

ωss [rad/s] 105.3848 103.8348 102.4421 101.0722 99.5634 98.2617 97.0215

realistic for obtaining, seems the measurement of the constant
component of the force transmitted by the whole conveyor
(with a feed) to the foundation.

In order to find out the dependence between the feed
mass m and the constant component of force1) F f on the basis
of the mathematical model of the conveyor (described in the
previous chapter), the force values corresponding to the mass
of the feed from 50 to 350 kg, were numerically calculated,
with a step of 50 kg. These values are listed in Table 1. On
their base the linear regression model of these two values was
calculated. As the result the linear model of the first order
regression was obtained:

F f (m) = −27.6m + 0.4857 (11)

It is possible to calculate – from this model – the mass value
of the feed on the bases of the force measurements (see Fig. 5).

Fig. 5. Linear dependence between the mass of the feed and the
constant component of the force transmitted to foundations

The optimal control value, it means the excitation fre-
quency of vibrators ωss, is the one which ensures the minimal
amplitude of vibrations of the force transmitted to foundations.
This value depends, among others, on the mass of the feed.
In order to find out the optimal frequency values the math-
ematical model of the conveyor (described in the previous
chapter) was applied. By means of simulations of this model
and the optimisation techniques, based on the golden cut and
parabolic interpolation [11], the set of optimal frequencies
corresponding to the mass of the feed from 50 to 350 kg with
the step every 50 kg was obtained (presented in Table 1). For
these data the numerical model of the linear regression was

calculated. As the result the linear model of the first order
regression was obtained:

ωss(m) = −0.028m + 106.67 (12)

presented in Fig. 6.

Fig. 6. Linear dependence of the optimal frequency on the feed mass

Equation (12) is simultaneously the control law, which
theoretically can be directly implemented in the controller.
However, in practice, such implementation without the analy-
sis of the current process situation can destabilise the process.
The presented model of the conveyor is very sensitive to con-
trol changes (excitation frequency of vibrators). Each change
introduces the system in the transient state characterised by
large overshoot. Disturbances in measurements of the constant
force component cause disturbances in the feed mass estima-
tion from the regression model (11). These, in turn, causes
fast-changing fluctuations of the excitation frequency, which
brings the system in the permanent transient state.

Due to the above, the controller intervention must be pre-
ceded by analysing whether it is justified in this very moment.
Such approach means resigning from the continuous control
and substituting it by the event driven control. The event,
which initiates a new control value – on the bases of the
regression model (12) – could constitute an essential change
of the feed mass on the conveyor trough. Thus, the detection
of the mass change would be reduced, in this case, to the de-
tection of the change of the constant component of the force
transmitted by the conveyor to foundations.

1) Due to an oscillatory character of the force time-series, its average value was taken in calculations in the window of the length corresponding
to 2 seconds of the machine operation in a steady state.
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4. Detection of the mass change

The algorithm of the GLR (Generalized Likelihood Ratio)
based on the idea of the so-called Cumulative Sum (CUSUM)
was applied for the detection of a step change of the mass.
This idea is based on constructing the so-called sufficient sta-
tistics (it means certain transformations of measurements),
which will draw out a possibly full information on residues2)

contained in the original signal.
Next, on the basis of this information, the statistical infer-

ence is performed. In other words, on the basis of residues the
decision rule is calculated to select one out of two statistical
hypothesis concerning the investigated signal parameter θ:

H0 : θ = θ0

H1 : θ = θ1

The H0 hypothesis means that none significant change of
the parameter θ occurred and it is equal θ0. The H1 hypothesis
means that the significant change of the parameter θ occurred
and it is equal now θ1, (i.e. in our case a step change of the
mass occurred).

The probability density distribution Pθ(y) means the prob-
ability of obtaining the measurement of y under condition that
θ is the real parameter. If Pθ1 (y) > Pθ0 (y), it means that the
observed y is more probable at θ = θ1. In case, when the
parameter θ can take on only two different values: θ0 or θ1,
in order to decide which one is more probable the following
likelihood ratio is defined:

Pθ1(yi)
Pθ0 (yi)

(13)

Due to practical reasons, for calculating the decision rule the
logarithm of this ratio is used:

si = ln
Pθ1 (yi)
Pθ0 (yi)

= ln Pθ1 (yi) − ln Pθ0 (yi) (14)

In case of N measurements the probability of their obtaining
is given by the probabilities product:

Pθ(yN
1 ) =

∏N

i=1
Pθ(yi) (15)

which is called the likelihood function. Thus, the decision rule
takes a form of the likelihood ratio:

QN = ln
∏N

i=1 Pθ1(yi)∏N
i=1 Pθ0 (yi)

(16)

which can be simpler written in a form of cumulative sum:

SN = QN =

N∑

i=1

si (17)

In case of the GLR algorithm, the logarithm of the likelihood
function for observations from y j to yk is written as:

Sk
j (θ1) =

k∑

i= j

ln
pθ1 (yi)
pθ0 (yi)

(18)

Since the θ1 parameter is not known, the above value is a
function of two independent parameters: time of the signal
change and parameter θ1 value after this change. The standard
statistical approach is in such case the application of the es-
timate of the highest likelihood of these parameters, it means
the double maximisation [12]:

gk = max16 j6k supθ1 Sk
j (θ1) (19)

In practice, if the signal disturbance is the Gaussian white
noise, the average value µ0 before the change is known, the
average value µ1 after the change is unknown and the constant
variance σ2 is known, the cumulative sum equals:

Sk
j =

µ1 − µ0

σ2

k∑

i= j

(
yi − µ1 + µ0

2

)
(20)

After introducing ν = µ1 – µ0 , the decision function can be
written in a form:

gk = max16 j6k supν
k∑

i= j

[
ν(yi − µ0)

σ2 − ν2

2σ2

]
(21)

Since the best estimate of the step change is, in this case, the
arithmetic mean, the above equation can be written as:

gk = max16 j6k

k∑

i= j


ν̃ j(yi − µ0)

σ2 −
ν̃2

j

2σ2

 (22)

where:
∣∣∣ν̃ j

∣∣∣ =
1

k − j + 1

k∑

i= j

|yi − µ0| (23)

The decision function assumes a final form:

gk =
1

2σ2 max16 j6k
1

k − j + 1


k∑

i= j

(yi − µ0)


2

(24)

The algorithm principle of operation is presented in Fig. 7.

Fig. 7. Operation principles of the GLR algorithm. A signal is
analysed in an expanding window from 1 to the current moment
k. To shorten calculation time, the window can be movable, of the
constant width. In the inner, narrowing window for each j = 1, .., k
the average value from equation (24) is calculated

2) The subject of analysis are residues, it means the difference between the measured signal, originated from the sensor, and the corresponding
variable analytically calculated on the model basis.
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5. Simulation results

The proposed control algorithm consists of the following
stages (shown in the upper diagram of Fig. 8):
1. Stabilisation – the delay needed for a stabilisation of the

force transmitted to the foundation.
2. Detection – the phase of the GLR algorithm operation

aimed at detection the essential change of the feed mass.
The detection of this change is signalled by exceeding the
assumed threshold value by the decision function (in the
middle diagram of Fig. 8, it is seen in the instant of 2.165
s, while the change occurred really in the instant of 2 s).

3. Stabilisation – the delay needed for a stabilisation of the
force after the step change of the feed mass. The delay
time is countdown from the time the change was detected
in the previous stage.

4. Averaging – the stage needed for the feed mass estimation
on the bases of the average force calculated at this stage
– acc. to the regression model (11).

5. Control changeing – at this stage the control value is cal-
culated (i.e. optimal frequency) on the base of the actual
feed mass calculated in the previous stage – acc. to the
regression model (12). Then, this new control is fed to
the object in a form of a smooth polynomial trajectory in
order to minimise overshoot, (shown in the lower diagram
of Fig. 8).

6. New control – the stage in which the force is already
stabilised after the control change and its effects can be
assessed.

Fig. 8. Results of the numerical simulation. Upper Fig.: time-series of
the force transmitted to foundations with the description of individual
control stages. Middle Fig.: time-series of the decision function of
the GLR algorithm. Lower Fig.: time-series of the feed mass and of
the control (excitation frequency)

Duration times of the above stages were experimental-
ly selected. In a similar fashion, the detection threshold for
the decision function of the GLR algorithm was individually
adjusted for the analysed case by the trial-and-error method.

The positive effect of the controller intervention can be
assessed by comparing the standard deviation of the force
time-series (std) in stage 4 (averaging) and in stage 6 (new
control). As it was marked in the upper diagram of Fig. 8,
before the controller intervention the std was equal 245, while
after implementing the new control the std decreased to 137.
Which means the profit was 108 (by the means of the ampli-
tude of the force transmitted to foundations) when the mass
of the feed increased by 100 kg, which constitutes decreasing
the force amplitude by app. 56%. The control profit is directly
proportional to the mass change values. The control algorithm
operates in the same way when the mass is abruptly decreased.

6. Conclusions

Simulation investigations confirmed the usefulness of the
rule-based control of the vibrators excitation frequency in the
vibratory conveyor operating on the basis of the Frahm’s elim-
inator. The event driven control interferes in the system only
when it is justified by the current process situation (e.g. in case
of the essential feed mass change), ensures the stable machine
operation and limits transient states. Simultaneously, it allows
to apply this type of conveyors for transporting significantly
larger feed masses than so far.

Further research should be focused on the case when the
change of the feed mass is not abrupt but continuous (e.g.
linear), which is more difficult for the detection (especially in
case of large measuring disturbances), but more probable in
the real industrial installation.
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