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Monte Carlo methods are a widely used class 
of computational algorithms for simulating the 
behavior of various physical and mathematical 
systems. They are distinguished from other 
simulation methods (such as molecular dynamics) 
by being stochastic, that is nondeterministic in 
some manner - usually by using random numbers
(or more often pseudo-random numbers) - as 
opposed to deterministic algorithms. Because of 
the repetition of algorithms and the large 
number of calculations involved, Monte Carlo is a 
method suited to calculation using a computer, 
utilizing many techniques of computer simulation.



Statistical Physics dealing with macroscopic systems often 
composed of a number of components comparable to Avogadro’s number 
appeared an important beneficient of  new computer facilities. 

A macrosystem may be found in one of its macroscopic states  
determined by particular microscopic states  of all the components 
and classically represented by points in a 6N-dimensional phase space 
(N is the number of system components). 

The macroscopic states characterised by macroscopic parameters
(observables A) such as energy, volume, degree of chemical order, 
magnetisation etc. are usually highly degenerate with respect to the 
microscopic ones {}. The values of observables A measured in 
particular conditions (temperature, pressure, external field etc.) are 
identified with corresponding averages <A> over all microscopic states 
{} in which the system may be found in this conditions.



The central problem of statistical physics (statistical thermodynamics) is a calculation 
of the values of <A>. The averaging is performed over an appropriate ensemble of 
macroscopic systems representing the related microscopic states. An ensemble is 
characterised by so called density () defined in the way that

is a probability that a system in the ensemble is in the microscopic state  (see 
e.g. Huang, 1963).
The principle achievement of the founders of statistical physics was the derivation 
of formulae for the densities eq() corresponding to ensembles of systems in 
equilibrium state.

Complete description of the system thermodynamics is derivable from the sum

called a partition function
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Type of ensemble Usage Density function eq,

H denotes Hamiltonian of 

the system

Microcanonical ensemble Isolated systems with 

fixed energy E

Canonical ensemble Systems with fixed volume 

V and number of particles 

N studied at fixed 

temperature T determined 

by thermal bath

Isothermal-Isobaric 

ensemble

Systems with fixed 

number of particles N

studied at fixed pressure P

and temperature T

determined by thermal 

bath

Grand Canonical 

ensemble

Opened systems with 

fixed volume V studied at 

fixed temperature T

determined by thermal 

bath and fixed chemical 

potentials k k – chemical potential
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SAMPLING

If A() denotes the value of the observable A in the microscopic state 
 then:
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where the sum covers all possible microscopic states  (whose number 
is most often extremely large or even infinite) and its strict 
calculation is usually unfeasible. The basic idea is to approximate the 
complete sum () by a partial one performed over some subset 
{i, i = 1, …, M} of the microscopic states 
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Simple sampling:  the random choice of the states i runs according 
to a uniform distribution. Drawback: many i states may correspond 
to the low value of the density  making the approximation poor.

Importance sampling: the states i are randomly chosen with a non-
uniform distribution () :
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Problem: how to generate a set of microstates with the desired
distribution ??



Markov chains as a tool for importance sampling
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Probability that an event yn occurs at a time tn in condition that events 
y1, y2,...occured at times t1, t2,...

Markov chain of events:
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If states of the systems in an ensemble change due to Markov 
processes, the time evolution of the probability distribution  P()
is given by a Master equation:
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 Detailed balace condition
for transition frequencies W

The detailed balance guarantees a convergence of a Markov chain 
to Peq().
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Simulation of Markov chains is a typical task realised by means 
of Monte Carlo algorithms:

Stochastics is digitally simulated by random number generators –
i.e. computer codes generating with a uniform probability numbers 
from a fixed interval (most often 0,1).

Basic idea:

 Let a certain event occur in reality with a probability P

 Random number R 0,1 is generated

 The event occurs in Monte Carlo simulation if R 0,P



The Monte Carlo method may be basically applied  to  
diverse kinds of problems in statistical physics:

 Simulation and characterisation of system properties in thermodynamic equilibrium:

The procedure starts from a system in some (arbitrary) initial state. Subsequently, an evolution 
of the system is simulated as a Markov chain of microscopic states i with  the transition 
frequencies W(ij) obeying detailed balance corresponding to the particular conditions of the 
equilibrium state in question. The applied algorithm must enable to follow the evolution of some 
macroscopic parameter of the system (for example its energy), so that it is possible to observe  
the approach of equilibrium (microscopic states are in dynamical equilibrium with the distribution 
Peq() ). Once this stage is attained, the microscopic states i of the system appearing at 
particular time moments may be randomly sampled and used in the averaging procedure
(effectively, time averaging is done).

Example:

STUF 
 



M

i
iE

M
U

1

1


     
i

iiB PPkS  ln

P(i) is the probability for the occurrence 
of the microstate i.



 Simulation of relaxation processes towards equilibrium:

The Master equation basically can be regarded as describing  relaxation and migration processes. 
The Monte Carlo method becomes, therefore, a natural tool for simulating such processes. 
Instead of sampling the microscopic states i after the saturation of the particular Markov chain 
one now simulates and observes an ensemble of independent parallel Markov chains and performs 
the averaging of the observable of interest over all of them at particular consecutive time 
moments also before the saturation. In this way the time evolution (relaxation) A>(t) of the 
observable is obtained. Since for a unique choice of transition rates, the condition of detailed 
balance is not sufficient, the treatment of such problems is, however, sophisticated, involving a 
number of problems including e.g. the relationship between the computer and real time scales. In 
general, the relaxation path towards equilibrium can sensitively depend on the particular physical 
model for the transition rates.

0.0 0.5 1.0 1.5 2.0

C
(
)

0.0

0.1

0.2

s l T > 0

  [ 106 MCS / vacancy]

0.0 0.5 1.0 1.5 2.0

C
(
)

0.0

0.1

0.2

s

l

T < 0

106 MC steps / vacancy

0 1 2 3 4



0.88

0.92

0.96

1.00

T > 0

T < 0

0,0 0,5 1,0 1,5 2,0

C
(
)

0,0

0,1

0,2

s l T > 0

  [ 106 MCS / vacancy]

0,0 0,5 1,0 1,5 2,0

C
(
)

0,0

0,1

0,2

s

l

T < 0

106 MC steps / vacancy

0 1 2 3 4



0,88

0,92

0,96

1,00

T > 0

T < 0

„ORDER-ORDER” RELAXATION A3B (Ni3Al)

Example



Simulation of non-equilibrium processes and transport phenomena

Such processes, as consisting of effective transitions between microscopic states constitute a 
natural object for studies by means of MC methods. Non equilibrium character of the 
phenomenon means that detailed balance must no longer be obeyed by the transition frequencies 
which are to model particular microscopic reactions involved in the process. 

Examples:

Crystal growth according to the Kossel model. In this model three atomistic-scale processes: 
deposition, evaporation and diffusion compete. Particular frequency (rate) is modelled and 
attributed to each process and its selective influence on the overall effect (e.g. crystal growth 
rate) may then be studied by means of MC.

Transport phenomena may be studied by means of MC both in stationary and non-stationary 
states of the systems simply by monitoring the process of transport during the simulated Markov 
chain. The standard method consists of monitoring mean-squared displacement R2

A(V)(t) of a 
tracer atom (A)/vacancy (V) as a function of MC time. 

Vacancy/tracer diffusion constant DV(A):  
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Limitations:

Thermodynamic laws correspond in statistical physics to the thermodynamic limit
N  , where N denotes the number of particles in the system. It is obvious that 
when numerically simulating a system, one always operates with a finite value of N. 

The “simplest” task aiming in the elimination of the parasitic influence of the 
sample limits on the simulated effects is usually realised by the application of 
periodic boundary conditions consisting of the consideration of the opposite sample 
boundaries as neighbouring parts. The well-known two-dimensional analogue of this 
idea is a transformation of a plane into a torus.

Despite compensating the boundary (surface) effects, periodic boundary conditions 
cannot remove the finite-size-caused  limitation in the consideration of any 
distance-dependencies. This applies e.g. to correlation lengths  (which cannot 
exceed the sample size) and results in characteristic blunting (rounding) of 
singularities marking continuous and discontinuous phase transitions. 
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Numerical implementation of MC

(choice of transition frequencies W(i  j))

Classical approach
(Metropolis, N., Rosenbluth, A.W., Rosenbluth, N.N., Teller, A.H., and Teller, E. (1953), 

J.Chem.Phys. 21, 1087)
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E=Efin – Eini, system energy equals Eini in the microstate i and Efin in the 
microstate j;
kB and T denote the Boltzmann constant and temperature, respectively and  is a 
time scale constant

Although the Metropolis transition frequencies obviously fulfil the detailed balance their use may 
be disadvantageous at high temperatures, where due to the transition probabilities approaching 
the value of 1, the system being off equilibrium keeps oscillating between different microscopic
states, which makes the simulated process not perfectly ergodic.



Glauber algorithm: (Glauber, R.J., (1963), J.Math.Phys. 4, 294)
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Probabilistic rationale:
The probability of an event: “the system either transforms from i to j or 
remains in i” is in this particular case equal to 1. On the other hand, it must 
be equal to a sum of the two corresponding probabilities.



The simulation algorithms involving the above formulae for 
W(ij) work usually in the following cycles:

The system is in some microscopic state I

Another microscopic state ji is chosen at random from the
set {i}

Transition ij is executed or suppressed according to the
probability  W(ij)

Time is incremented by 

Drawback:

A number of MC steps are „lost” – no transition is executed



PHASE EQUILIBRIA BY MONTE CARLO SIMULATION

A-B, A, B
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APPLICATION: 

LONG-RANGE ORDERING 

IN INTERMETALLICS



„Order-disorder” phase transformations

Continuous (2nd-order)

transformation

Discontinuous 

(1st-order) 

transformation



MONTE CARLO SIMULATIONS:

•A3B or AB binary system with L12, L10 or B2 superstructure,  

•40  40  40 cubic cells, 

•1 vacancy (10 vacancies in a piloting study)

general assumption: vacancy mechanism of atomic migration

Distance
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SUPERSTRUCTURE STABILITY
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APPLICATION: 

PHASE EQUILIBRIA

Vacancy concentration in 

intermetallics



MODEL: EQUILIBRIUM CONCENTRATION OF THERMAL VACANCIES 

IN LONG-RANGE ORDERED SYSTEMS

Ising lattice gas:

NA A-atoms, NB B-atoms, NV vacancies

NA + NB + NV = N = const

W = 2VAB-VAA-VBB < 0 

(tendency for ordering)

VVV = 0

W. Schapink, Scr. Metall. 3, 113, (1969).

S. H. Lim, G. E. Murch, W. A. Oates, J. Phys. Chem. Solids 53, 181, (1992) 

R. Kozubski, Acta Metall. Mater. 41, 2565, (1993). 

The model is solved by means of two methods:

•Bragg-Williams approximation (mean field)
A.Biborski, L.Zosiak, R. Kozubski, V. Pierron-Bohnes, Intermetallics, 17, 46-55,  (2009).

•Semi-Grand Canonical Monte Carlo (SGCMC) simulations
A.Biborski, L.Zosiak, R. Sot, R. Kozubski, V. Pierron-Bohnes, submitted to J.Chem.Phys.



Semi-Grand Canonical MC of a ternary A-B-V lattice gas:

•Generation of a sample 15x15x15 unit cells, 

periodic boundary conditons

•Determination of relative chemical potentials AV and BV

•Random choice of a lattice site

•Random choice of the exchange type:

Species Exchange type

A A  A A - B A - V

B B - A B - B B - V

V V - A V - B V - V

•Execution of the exchange according to Metropolis probability:
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TYPICAL RESULT IN B2

SUPERSTRUCTURE

Equilibrium

vacancy concentration 

IN THE LATTICE GAS

Limits of equilibrium

vacancy concentration

IN CRYSTALS with diverse

composition (hysteresis)

Equilibrium of 

vacancy-poor (crystal) 

and vacancy-rich phases

T = const



CV facet

CA/CB = const path

Hysteresis

and thermodynamic integration result



Fig.5. Sections of the miscibility gap of the A-B-V lattice gas. Vacancy-

poor borders of the sections correspond to: (a) A0.52B0.48-V (d=0.48); (b) 

A0.5B0.5-V (d=0.5); (c) A0.48B0.52-V




