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BASIC IDEAS OF STATISTICAL THERMODYNAMICS

Objects: systems composed of many particles

Natural application:
macroscopic bodies composed of N oc 102° atoms/molecules

Basic notions:

@®Microscopic state of a macroscopic body: a state given by particular
states of all atoms/molecules

@® Macroscopic state of a macroscopic body: a state directly observed
(shape, hardness, roughness, colour etc.)

Basic parameters and functions:

@®Internal energy: sum of all types of energies of atoms/molecules
building a macroscopic body. Internal energy is highly degenerated
with respect to microscopic states of the body.

® Temperature: parameter, whose value is equal in bodies being
In thermal equilibrium



Interpretation of temperature:

a quantity T proportional to an average kinetic energy of one
atom/molecule - a measure of chaotic motion of atoms/molecules

Factors controlling the generation of a concrete macroscopic state
of a macroscopic body:

(I) Tendency for attaining possibly lowest value of internal energy E,
(I1) Probability for reaching such energy —number p of microscopic states
corresponding to this energy. p_increases with increasing energy

Importance of the factor (ll) increases with increasing temperature

CONSEQUENCE:
The observed equilibrium macroscopic state is a compromise between

both factors.
Quantitatively it corresponds to a minimum value of a function

F=E-T xkg xIn(p), kg =const. « free energy



More rigorous approach:

Entropy: S =kgxIn(p) - defined for an equilibrium state !!!!

- ST’
Relation between S and T: T = 6—E

STANDARD ASSUMPTIONS:
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Question:
What is the probability P(Q) that the system is in a microscopic state Q

with the internal energy E(Q) ?

NOTE ! The question makes sense, because the system is not isolated !!



p —number of possible microstates of the supersystem, for which
the system is in the microstate Q

P(Q) < p

Entropy S, of the surrounding:

S,(Q) =k, xIn(p) = p(Q)OceXp[ o(Q)]

But: SO(Q)ESO[EO—E(Q)]"’ ( )——x E(Q)+

~ EQ)
S0(Q) =~ So(E,) - E

function

and thus: ex{— E(Q)}
P(Q)= KT where 7 =Zex;{_ E(Q)j| pr— partition
Q

It is prooved that: F — _kBT X In(Z)



Thermodynamics of solid solutions

Solid solution:

A solid multicomponent phase existing for a finite range of the
compoment concentrations.

Configurational free energy of a solid solution: part of the free energy which depends
exclusively on the configuration of atoms over the crystalline lattice

e %xF=f=cfo+(l—c)x fo
f =cx fA+(1—c)x fg +Af
Af = Au—-T x AS
configurational configurational configurational

free energy of mixing internal energy of mixing entropy of mixing



THEORETICAL JUSTIFICATION FOR THE SEPARATION OF
NON-CONFIGURATIONAL TERMS OF THE FREE ENERGY:

The term “chemical order” is connected with atomic configuration; i.e. with an
arrangement of atoms over the sites of a crystalline lattice. As recently formulated." two
very different time scales exist in a real crystal; a slow one for atomic interchanges (creating
configurations) and a much faster one for lattice vibrations and electronic motions.
Consequently, it is possible to perform statistical averages separately over these types
of process (for references to original papers see Ref. 1). It is then assumed that only
“one-way" coupling exists between the particular energy terms:

E;u'.{Sta{&} = E:(G} + El:-:h{E} {I}
where:
a atomic configuration,
E(state) total crystal energy attributed to a particular state,
E.la) configurational energy and
E..(a) energy of other degrees of freedom (vibrations, electronic motions) which are

dependent, however, on the configuration.
The partition function is thus given by:

z=gexp| - %] @)

where:
Vo) = Edo) + E.ulo) — T x S,(a) (3)

and S_,(c) represents & set of configuration-dependent functionals of entropies connected
with other degrees of freedom.



IDEAL SOLUTION

Au=0 = Af =TxAs, As=KgxInW

W — number of distinct configurations of A and B atoms over the
crystalline lattice of the solid solution

(cN )!x[(Nl!_C)N ]!; INW ~-N[cInc+(1-c)in(1-c)] valid for large N

Af
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REGULAR SOLUTION

Au=0 Au = U, — U
/ \
internal energy of a solution internal energy of not-mixed
elements

THERMODYNAMICS:

E(stat
F = _kB XT X In Z Z= Zall stateseX{_ (S - e)i|

— COMMENT:
E(state)— E.ni + Eoirer (conf ) < | |
Such grouping of energies
= \ Is reasonable due to different
configurational energy  energy of other degrees time scales (mentioned earlier)

of freedom related to particular
configuration

Consequence:
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The partition function Z may thus be written down as:

7 = {GX{— Econf + |:other (COnf )j|}
conf kBT

— “average” configurational energy accounting
Econf + FOther (COnf )= Econf <= for averaging over non-configurational degrees
of freedom assigned to a particular configuration

where

Modelling of the (average) configurational energy

First approximation: pair-interactions of nearest-neighbouring (nn) atoms
—the Ising model:

Vi is the i-j nn pair interaction energy

Econf = Z(N i XVij) .where N;; Is a number of i-j nn pairs,
]



TWO-COMPONENT (BINARY) A-B SYSTEM

v ©,

Description of the atomic configuration of the system: //J

N —total number of atoms (both A- and B-type), v \

C — concentration of B-type atoms C = Ng/N @

Z — co-ordination number: number of nn lattice sites surrounding

a lattice site; in bcc structure Z=8 A (
2
N (Al), Ng) Numbers of A- and B-type atoms (I/Q) (

occupying 1- and 2-type sublattice sites

N lgl), N |(32)

Fundamental relationships:
NO+N®=(1-c)xN

bcc-type lattice

with two sublattices
consisting of N and N@
lattice sites, respectively

N =ZX (1_ C)x N — 23

Ngg = Z % (C - %) x N +iddz,

ZxNW4zZxN@=2N,, +N,; =Zx(1-c)xN
ZxNY+ZxN@=2N_ +N,, =ZxcxN

—>

CONCLUSION: N& and N,, areindependentvariables !!
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ATOMIC (CHEMICAL) ORDER

N

N

N

Long-range order (LRO):

Differentiation ,,n” of probalilities of
particular sublattice sites being occupied
by particular atoms.

Diffraction: superstructure peaks

Related variables: N(A1

LRO parameter:
( N @)
C

2
7 * N0 _ Pytc-1,

¢ J
NOT NO® N N n - c<1

N él) N (BZ) N

N(1)=N(2) Pp = A : OS?]S].

Short-range order (SRO):

Tendency for A-(B-) atoms to be
preferencially surrounded by B- or A-atoms
( ).

Diffraction: diffuse scattering, background
modulation between Bragg peaks

Related variables: P(N,,) = 2N,/ (ZxN)
SRO parameter: o = | P(NAA)-(1-0)2|

NOTE: n and o are totally independent !




CONFIGURATIONAL ENERGY OF MIXING E,,

Eont =Z(Nij ><Vij)= N aa XVan + Ngg XVigg + N 35 XV g
1]
B Eo=%><Nx(l—c)xeVAA+%xNxchxVBB
— — 1
E =E_. —E, =|:Ex Nx(1-c)xZ - NAA]XW

W =2xV,, =V, =V,

CONCLUSION: the configurational energy of mixing depends
exclusively on Ny, — as a configurational variable and
on W — as an energetic variable




GENERALIZATION:

Within pair-interaction approximation:

E, =E,({Ny} i,i=123,..n)

n-component systems, N variables, nNxm-m-n+1 Ni(”) variables
structures with m sublattices 2

nZ+n

E, = E,(N;(r)p 1,i=123,..mk=12,.,r)

pair-interactions in n°+n

r co-ordination zones R 5 N, variables, nxm-m-n+1 Ni(ﬂ) variables

Beyond pair-interaction approximation:

many-body interactions Em = Em ({N jKI... })

numbers of clusters
with particular
atomic configurations



CONFIGURATIONAL FREE ENERGY OF MIXING
F=-k.xTxInZ constant factor
- B
Ee., E,+E l E
Z=Yexpg-——=|=Dexg- ot En =C(T)x Y exg-—=
conf kBT conf kBT conf kBT
Within the nn pair-interaction approximation:

Z =C(T)x Zexr{— Emk('iAA)] =C(T)x Z{g(N AA)xexp{— Emk(B'\T'AA)]}

o

number of ALL configurations
showing similar values of Nja

Basic thermodynamical approximation:

- C(T)x{g(NAA)XEX;{_ Emk(?II_AA)]}

The partition function is approximated
by its maximum term

max



Hence:

F = {Em(NAA)— Kg xT X In[g(NAA)]}(MIN
F = {Em(N AA)_T X Scont }‘MIN

Where the functional of the configurational entropy of mixing:

Sers = ke xIN[g(N )

Conclusion: the equilibrium value of the parameter N,, at temperature T
minimises the free energy functional F

BASIC DIFFICULTY AND THE PRINCIPAL PROBLEM OF
CONFIGURATIONAL THERMODYNAMICS:

It is impossible to exactly evaluate the number g(N,,). (The exact solution (by
Onsager) exists only for a 2-dimensional lattice)

The same problem appears when working with many-body potentials — no
exact evaluation of g({Ny.}).

Formulation of appropriate approximation methods for the evaluation of ¢
IS one of the main tasks of the configurational thermodynamics.



CONCEPT OF CLUSTER VARIATION (CVM)
R. Kikuchi, Phys.Rev. 81, 988, (1951).

Complete description of an atomic configuration of a crystal: information on the occupation of EACH
lattice site — unfeasible ! — but necessary for accurate determination of the free energy

General assumption of the CVM: The atomic configuration of a crystal is given in terms of cluster
variables {o;; }: the probabilities that finite clusters of the lattice sites appear in particular configurations
(feasible to be given explicitly).

Piy N Gij Gijl

In an effective analysis clusters up to an arbitrarily chosen biggest one are considered. The bigger is the
largest cluster, the more accurate is the description. Asymptotically, the exact description is achieved if
the entire crystal is taken as the biggest cluster.

The effective procedure consists of the minimisation the F functional with respect to {oj_. }:

F = {E.INuloy Dl ke xTxinfo(N o DB = mmeer

Methods are developed for finding g({oy_. })



First, one writes down the number W of possible arrangements of all o clusters having any
configurations in the system composed of N lattice sites. If there are my N such clusters in the
system one has:

(m,NY (N )1'""‘)” = (e}, )

"IN} [T oV

(16)

The value of W given by (16) is, however, overestimated because the a clusters overlap and,
therefore, the subclusters of o contained in the overlapping volumes count too many times.
The desired correction is obtained in recursion:

First an a-1 cluster is considered. Let ng_'denote the number of times the a-1 cluster is

mna!
contained in an a-one. If W is given by (16) the a-1 cluster is counted ({a = ]}N)

Mgy
times instead of ({a e 1} N ) . The corrected value of W is thus given by:

e

a, My d, (17)
(la} )™ x (fe -1}, )=
where:
ay = 1 for the basic cluster
o-1
wma Mo -1 X8g_1] =My _| — Mg X n(x as)

In the next step similar procedure is applied to the subcluster a-2, then to a-3, etc. As a result,
after having applied the Stirling formula, the configurational entropy is given by:

SP:Nkazmvayva(o-v)]npv(av) (19)
v=| o,

with the coefficients ay, determined by the system of recursive equations (18).



“0th” (Bragg-Williams) approximation:
B.J. Bragg, E.J. Williams, Proc.Roy.Soc., A151, 540, (1935); A152, 231, (1935)

The biggest cluster: a single lattice site ‘
Cluster variables: pa1, Pa2 Pg1y Pe2 =M

Basic approximation:

1

(2)
(N )= NP xZx N =%x N xe[(l—C)z—sznz]
—x N
2

The approximation consists of the negligence pf pair-correlations and relates N,, to 7 -

which, as was shown, is not true!

The approximation yields:

E E, = %xNx(l—C)xZ—NAA xW

E =%x N xeCx[1+C(772—1)]xW



The approximation yields:

E_ =%x N xeCx[1+C(772—1)]><W = Em(ﬂ)

and: N Q1N @)

9(7)= g({N®})=

T NOINGDINDIN @

Stirling formula yields:

In[g(m)]~

—% N x[(cp+1-c)xIn(cp+1-c)

In(g)

+(-cn+c)xIn(-cn+c)
+(-cnp+1-c)xIn(-cp+1-c)

+(cn+c)xIn(cy+c)]+ const B P
n

g(n) is a DECREASING function of




= (e ) ko<l

Em(q)= Ex N x ZxCx 1+C><(772 —l)]xW decreasing function of n

W>0: increasing function of n
W<O0: decreasing function of n

CONCLUSION:

If W> 0, F=F(»=0) —no atomic ordering at any temperature

If W<0, F=F(n=1) at T=0 K — atomic ordering within a finite range
of temperatures.



What happens when W <0 ?

B2 superstructure: - T >T,>T>T,>T>T>T,

.\‘ \ i T, T, T; At T 2T;Fi, = F.in(7=0)
Ty

Ts At T < T4 I:min = Fmin(77>0)

Only one single minimum
of F appears !

T6
N W O B S . W T

7 42 g4 g6 g5 10 1

17
1

Consequently: T. evaluated from the equations:

oF
10 =45 | ——(Tc.n=0)=0 16c(1-c)
18 | B
a6
94}
42




T>T,>T>T,

L1, A
superstructure:

Ordered (#>0) and disordered
(n=0) phases coexist as long as
F shows two minima

two minima of F(n)

f

Al

\.

T ZTZ: I:min = Fmin(n:O)

T<T2: I:(l)min (77:0)’ F(z)min(ﬂ>o);
F(Z)min(”>0) = |:(1)min (77:0)

T:Tt: F(Z)min(n>o) = I:(l)min (77:0)
T< Tt: F(Z)min(”>0) < |:(1)min (77:0)

T —<TC: I:min = Fmin(77>0)
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What happens when W >0 ?
n=0




Interpretation: two-phase equilibrium: lever rule

Entire system: A-B:
N=N®+N®@
N,=N,D+N,@
Ng=NgD+N;®@
Ng=C,N

Hence:

-

T
iy




DECOMPOSITION OF A BINARY SOLUTION A-B INTO TWO PHASES:

Co— concentration of B-atoms in the homogeneous solution
(before the decomposition

c,, C, — concentrations of B-atoms in the two phases,
into which the solution decomposes

AF§

Decomposition DECREASES y S
the free energy of the system / __________ S

Decomposition INCREASES
the free energy of the system

I
1
I
1
! T
c C. éo}'\
CZI C2 C
Decomposition into ¢, and ¢’
INCREASES F, but the continuation
to ¢, and c, finally DECREASES the

free energy of the system



SPONTANEOUS AND ACTIVATED DECOMPOSITION

activated activated
decomposition: decomposition:
F nucleation & growth nucleation & growth

Spinodal i .
(barrier-less)
decomposition

%
o

: f . T-.-.-.- 2
eqg S S C
C,C, C
The solution with ¢,®% < c, < c,®4 decomposes into two phases with
concentrations equal to ¢,%% and c,*

homogeneous

: %4 -homogeneous
solution 2

solution




MISCIBILITY GAP AND SPINODAL

) \ T homogeneous solution

spinodal
decomposition

-

p nucleation & growth



THEORY OF SPINODAL DECOMPOSITION

Free energy of an inhomogeneous system
CONTINUOUS MEDIUM approach:

F(C)= % x [ f(C)x d°r ¢ -average concentration

f(C)=f C @ ﬁa_c o”c - free energy per
lor )| ax; ox; || oxox; | one atom

- oc w0t . oc o
f(c)= f,(c)+ L, % xox + K o, ox +
I

|
free energy per one atom
for a homogeneous system




Cubic crystal:

inversion: x; = - X;: = L=0
k) = x5, = 81‘2 )
v : 'oavie) !
2 K@= lg = 9T 5
1 1] 2 Yij
8(Ve)

F(c)= % J dVv [fo(c)+ WV + kB(VeY + ]



o)
Ve = v o (Wvc)- 9K (ve)

ocC
but:
i oM .

IdV K-(l) 2 ) _ f[K(l)VC o ﬁ}jS — 0

v S
hence

(1)
oC
and:
(1)
F( ) —IdV[f +K(VC ] K.__agc +K(2)

For systems which are homogeneous at any temperature there must hold:

x>0



Diffusion in inhomogeneous system:

General equation for diffusion flux density:

L NI ) oc o =
j(l’)=—|\/|VV[,UB(r)_ﬂA(r)]’ E=_V'J
i ! !

i: mobility chemical potentials mass conservation

. . AF _
IuB (r)_ luA(r ) - AnB (F) | (AnB (r ) — O Ac—>0/\A3r—)O)
- N V OF of
:uB(r)_ﬂA(r)= N &(l—:) - oC B ZKVZC

variational derivative



hence

C
linearisation:
. _ . of of o’ f
c\r)=c,+ulr), ulr)<<c,, =—/|. + XU+ ...
( ) 0 ( ) ( ) 0 aC aC 0 aCZ 0
average concentration
- 5 -
U _ mv?| 9 ': . —kV* |u
ot - oc” ' )

I

linear differential equation



Assumption:

U(F, t) = IU ((_j, t)x eiﬁqu» <—  Fourier transform
|

g wave amplitude

27/




The resulting equation for U:

au(q,t)=_MOIZ of
ot oc’

solution:




o f
oc?

N

Solution for

<0

= inside the spinodal curve !

( ALY

dominating

4 wave \

-
up-hill diffusion




