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Abstract: Grain boundaries having no special geometric features are referred to as mixed.

Mixed boundaries constitute a large class, and the need for a finer differentiation arises. A

mixed boundary can be characterized by linking it to the nearest boundaries with special

geometric attributes, in particular, by its decomposition into twist and tilt components. We

investigate and compare the quantitative methods and parameters used for description of

mixed boundaries. The considered methods are based either on the decomposition or on

some other measures of deviations from pure-twist or pure-tilt boundaries. Furthermore,

the methods are either limited to boundary representations with the smallest misorienta-

tion angles or take into account all symmetrically equivalent boundary representations, and

these two approaches differ in their meaning, physical significance and conclusions. The

relationships between the methods of mixed boundary characterization are clarified and the

suitability of particular parameters for analysis of experimental data is assessed. These

issues are important for a thorough understanding of grain boundary distributions in the

space of macroscopic boundary parameters. The considered techniques and parameters are

used to examine mixed boundaries in Ni-based superalloy IN100.
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1. Introduction

Properties of polycrystals are known to be influenced by grain boundaries [1]. A com-

plete description of structures of grain boundary networks is beyond current experimental

capabilities, but grain misorientations and vectors locally normal to boundaries, i.e., the

so-called ”macroscopic boundary parameters” [2], are accessible. Grain misorientations are

routinely measured via acquisition of orientation maps, and there is also a considerable

progress in research involving both misorientations and boundary inclinations. Moreover,

conventional experiments on bicrystals are being supplemented by measurements on sec-

tioned polycrystals (e.g., [3]) and by tomographic techniques (e.g., [4]). These new methods

provide boundary data sets sufficiently large for performing statistical analyzes of bound-

aries.

To grasp the vast (five dimensional) boundary space, some classifications and reference

boundaries are needed. Besides the partition into small- and large-angle boundaries and the

assignment of a CSL number, which take into account only grain misorientations, it is com-

mon to describe boundaries as twist or tilt. With n denoting a unit vector (n · n = n2 = 1)

normal to the boundary plane and u being a unit vector along the misorientation axis, a

boundary is referred to as twist or tilt if it has a representation such that |n · u| equals 1

or 0, respectively. In other words, a twist boundary has a representation with the misorien-

tation axis perpendicular to the boundary plane, and a tilt boundary has a representation

with the axis in this plane. Low-index twist and tilt boundaries can be relatively easily

visualized, and – more importantly – they frequently serve as a proving ground for various

grain boundary analyzes (e.g., [5, 6]).

Ideal (pure) twist and tilt boundaries are special cases. Most boundaries are neither twist

nor tilt; they are referred to as mixed. Despite the size of the class of mixed boundaries, in

many studies, they are eclipsed by the geometrically special cases. Therefore, in analysis of

error-affected experimental data, the need for a finer characterization of mixed boundaries

arises. For that, some quantitative parameters are needed, and one standardly refers to the

notions of twist and tilt ’components’ of mixed boundaries. The concept of ’de-composition’

of boundaries into twist and tilt components is discussed in most introductions to grain

boundaries (e.g., [1,7]). However, the literature is frequently vague about the decomposition

of symmetrically equivalent boundary representations and about expected end-results of

the decomposition. Moreover, it completely ignores practical aspects of application of the

decomposition to analysis of error-affected boundary data.

Below, we explore ways of quantitative characterization of mixed boundaries. In par-

ticular, we analyze in detail their decomposition. Because of symmetry, the decomposition

leads to multiple results, and the basic question is, what should be accepted as a quanti-

tative outcome of the procedure. There are also the related problems of the meaning of
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particular results, and the relevance of the angles of twist and tilt components as measures

of the closeness of a boundary to the twist or tilt geometry. Some of these issues have been

raised before (e.g., [1, 8–10]), but none of the previous accounts is complete. Besides the

angles of components, there are other parameters linking mixed boundaries with twists and

tilts. One pair of parameters is based on properly defined distances of mixed boundaries to

the nearest pure-twist and pure-tilt boundaries, and another uses the parameter |n · u| and
its extrema over equivalent boundary representations.

These approaches to quantitative analysis of mixed boundaries are described and com-

pared. A distinction must be made between methods using just boundary representations

with the smallest misorientation angles and those using all equivalent boundary represen-

tations. They give very different depictions of distributions of particular boundary types.

Within the class of approaches taking into account equivalent representations the differences

are small, but they have an impact on practical applicability of particular parameters to

analysis of experimental data.

We begin by introducing notation and basic mathematical aspects of grain boundary

decomposition. Next, the impact of symmetries is examined; with crystal symmetry taken

into account, the decomposition becomes ambiguous (”degenerate” in parlance of [8]), and

we consider distinctness of its results. Then, the decomposition is confronted with other

ways of quantifying the degree of tilt and twist. Finally, we use the considered parameters

to investigate mixed boundaries in the Ni-based superalloy IN100.

For simplicity, our considerations are confined to centrosymmetric crystals. This allows

for limiting the needed symmetries to proper rotations of crystal point group. For conve-

nience, the final sections and all our examples are limited to the cubic m3m (Oh) crystal

symmetry.

2. Notation

Of all texts concerning the boundary decomposition, the article of Fortes [9] seems to be

closest to our considerations, and the notation used below stems from that paper. Differ-

ently than in [9], rotations are parametrized by Rodrigues vectors. This parametrization

simplifies some derivations and expressions. It was already used for describing boundary

decomposition in [1] (p.23), but that account is enigmatic and incomplete.

Calculations utilizing the Rodrigues parameterization are particularly easily performed

in Cartesian reference systems linked to crystal structures. In this parameterization, a

rotation about u by the angle θ (0◦ ≤ θ ≤ 180◦) corresponds to the vector U = tan(θ/2)u.

Hence, the rotation inverse to U corresponds to −U, and the identity corresponds to the

vector of zero magnitude which will be denoted by 0. The rotationN◦L being a composition
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of rotations N and L is given by

N ◦ L = (N+ L−N× L)/(1−N · L) .

Formally, the product ”◦” can also be applied to arbitrary vectors not representing rotations.

In particular, a vector, say v, after rotation represented by U becomes U ◦ v ◦ (−U). For

more detailed introduction to Rodrigues parameters and conventions used see [11].

Within the macroscopic description, a planar segment of a boundary of a grain is deter-

mined by the pair (U,n), where n is a unit outward normal and U represents misorientation

of a neighboring grain. We use the convention with the left side ofU linked to the coordinate

system in which n is given. If the same boundary is expressed in the system of the other

grain, the misorientation corresponds to the vector U′ = −U, and the boundary normal is

n′ = −((−U) ◦ n ◦U).

3. Twist and tilt components

Briefly, the twist (N) and tilt (L) components of the grain misorientation U with respect

to the boundary normal n are parts of the factorization of U into a product of N and L,

where N represents a rotation about n, and L is a rotation about an axis perpendicular to

n [8,9]. More precisely, for given finite U (̸= 0) and unit normal n, the twist N and tilt L1

satisfying the requirements U = N ◦ L1, N ∝ n and N · L1 = 0, have the forms

N = (U · n) n and L1 = (−(U · n) n) ◦U . (1)

Analogously, U = L2 ◦N together with N ∝ n and N · L2 = 0 leads to

N = (U · n) n and L2 = U ◦ (−(U · n) n) . (2)

If U is a half-turn (180◦-rotation) and n · u ̸= 0, then N is a half-turn, and L1 =

n× u/(n · u) = −L2. If U is a half-turn and n · u = 0, there are infinite number of

solutions with tilts being half-turns about arbitrary axes perpendicular to n and twists be-

ing rotations by twice the angles between tilt axes and u; further on, this particular case is

neglected.

The twist component N is the same in both types (N ◦L1 and L2 ◦N) of the decompo-

sition. The vectors L1 and L2 are generally different, but they have equal magnitudes. If

Li is non-zero, it can be expressed as Li = (U · li) li, where the unit vector li is obtained

by normalization of Li. Thus, the respective angles ν and λ of the rotations N and Li are

given by

tan(ν/2) =
√
N2 = |U · n| and tan(λ/2) =

√
L2
i = |U · li| ,

where N2 and L2
i denote N ·N and Li · Li, respectively. Since N ◦ L1 = U = L2 ◦N, the

second of the two tilts can be expressed as L2 = N ◦L1 ◦ (−N), i.e, the vector L2 equals to
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L1 rotated by N. If L1 = L2, then either N = 0 or Li = 0. Clearly, if either N or Li equals

0, the other one equals U, and vice versa, if either of them equals U, the other one is 0.

Relationships between directions and magnitudes of U, N and Li are illustrated in Fig. 1. Fig. 1

For a given U, the twist and tilt angles ν and λ as functions of n are symmetric with

respect to rotations about u. In other words, the decomposition of U with respect to n

gives the same angles as that with respect to (ξu) ◦ n ◦ (−ξu), where ξ is an arbitrary real

number. Similarly, for a given n, the twist and tilt angles as functions of U are symmetric

with respect to rotations about n; the decomposition of U with respect to n gives the same

angles as the decomposition of (ξn)◦U◦(−ξn) with respect to the same vector n. Moreover,

from N ◦ L1 = U = L2 ◦N under the condition N · Li = 0, one gets

1 +U2 = (1 +N2)(1 + L2
i ) (3)

(or, in terms of the angles, cos(θ/2) = cos(ν/2) cos(λ/2) [9]). This implies that the magni-

tudes of the components N or Li cannot exceed the magnitude of U. Consequently, neither

the twist angle ν nor the tilt angle λ can exceed the misorientation angle θ. The tilt angle

λ is additionally bounded from top by 2α, where α = arccos(|n · u|) is the angle between

directions of n and u. Proofs of the above claims are given in Appendix.

4. Impact of symmetries

A boundary can be represented in an equivalent way by a number of different (U,n) pairs.

The equivalences appear because of the crystal symmetry and the grain exchange symmetry

[12]. The latter must be taken into account if grains cannot be identified in a unique way (as

in experiments on polycrystals), and it means that (U,n) is equivalent to (U′,n′). Because

of crystal symmetry, the identification of a boundary by (U,n) is equivalent to those by

(U,−n) and (SL ◦U ◦ (−SR), SL ◦ (±n) ◦ (−SL) ), where the Rodrigues vectors SL and

SR represent proper rotations of the crystal point group [12]. We take into account all

equivalent representations SL ◦U ◦ (−SR) in accord with the current standards in analysis

of grain misorientations [13–15]; in older papers, e.g. [9], only symmetry of one crystal is

explicitly considered while that of the other crystal is tacitly assumed. With our focus on

the cubic holohedry, SL and SR are elements of the 432 (O) point group.

There is a question about additional ambiguities of decomposition, other than the two

tilt components L1 and L2, arising from the equivalences. Let us first consider the exchange

of the grains. The decomposition of U′ = −U = −((−U) ◦ U ◦ U) with respect to the

normal n′ = −((−U) ◦ n ◦U) leads to twist and tilt components

N′ = −((−U) ◦N ◦U) , L′
1 = −((−U) ◦ L2 ◦U) and L′

2 = −((−U) ◦ L1 ◦U) .

Thus, the vectors N′, L′
1 and L′

2 represent the same rotations as N, L2 and L1 in a different

coordinate system. In other words, the vectors resulting from the decompositions for the
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equivalent pairs (U,n) and (U′,n′) are congruent and are considered as identical, i.e., the

exchange of grains does not lead to geometrically different results.

Let us now proceed to the impact of crystal symmetries. Based on eqs. (1) and (2), it

is easy to see that neither N nor Li depend on the sense of the vector n, so the equivalence

between (U,n) and (U,−n) is irrelevant for the decomposition. On the other hand, the

decomposition of equivalent misorientations SL◦U◦(−SR) with respect to SL◦n◦(−SL) may

give many numerically different results. However, since for the same symmetry operation

SL on both sides of U one has

SL ◦U ◦ (−SL) = SL ◦N ◦ L1 ◦ (−SL) = (SL ◦N ◦ (−SL)) ◦ (SL ◦ L1 ◦ (−SL)) ,

(plus similar relationship for L2 ◦N), the decompositions of U and SL ◦U ◦ (−SL) lead to

congruent results. Let SL ◦ (−SR) = S. For getting non-congruent decompositions of all

equivalent representations SL ◦U ◦ (−SR) = (SL ◦U ◦ (−SL)) ◦ S, it is enough to consider

the equivalence of U and U ◦ S with the symmetry operation S on just one side of U. The

operation S was arranged to act on the right side, so the change of the representation from

U to U ◦ S has no impact on the boundary normal n.

Despite numerous references to twist and tilt components of mixed boundaries, there

are no definite guidelines on the ’end-product’ of the decomposition. In general, with all the

combinations involving L1 and L2 for each U ◦ S, the decomposition leads to a compound

result; in the cubic case, up to 48 different pairs of twist and tilt components may be

ascribed to a mixed boundary. There is no simple prescription for, or purpose in dealing

simultaneously with all these pairs. On the other hand, if only some of the results are to

be selected, one needs criteria and physical, geometrical or computational reasons for the

selection.

One of these criteria is simple and common. Instead of considering decompositions of all

equivalent boundary representations, it is convenient to focus only on the representatives

U with the smallest misorientation angle (usually referred to as disorientations [8]), and to

ignore symmetries other than S◦U◦(−S). This leads to a unique (up to congruence) set ofN

and Li vectors and to unique twist and tilt angles. A disorientation is sometimes additionally

restricted by the requirement that the misorientation axis is in the ’standard triangle’. Since

the angle preserving transformations S ◦U ◦ (−S) are linked to the transformations of the

normal S◦n◦(−S), this additional restriction has no impact on the results of decomposition.

5. Quantifying the degree of tilt or twist

The most basic objective of the decomposition is to infer how a boundary deviates from

pure-tilt and pure-twist geometries. For that a ”degree of tilt or twist at the boundary” [16]

is needed. This degree can be measured by angles of the twist and tilt components, but
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that is not the only way to put a figure on it. Below, we discuss and confront two different

implementations of the decomposition and other approaches to quantification of tilts and

twists in boundaries.

5.1 Decomposition of disorientations

It is easy and convenient to limit the decomposition to boundary representations based on

disorientations. As was mentioned above, this leads to unique twist (ν) and tilt (λ) angles.

Values of ν and λ can be ascribed to every planar segment of a boundary. The distributions

of these angles are simple and smooth. They vary continuously with misorientation and

plane parameters. Example sections through these distributions for the Σ7 disorientation

(38.2◦ rotation about the [111] axis) are shown in Fig. 2. Fig. 2

This computationally convenient approach has a relevant negative aspect. Certain fea-

tures of boundaries are not apparent when only the smallest-angle representations are con-

sidered, because to expose them, all symmetries need to be taken into account. The classic

example of that is the coherent twin boundary in fcc metals. The decomposition of the

particular (smallest-angle) representation U = (1, 1, 1)/3 of the Σ3 misorientation with re-

spect to n = (1, 1, 1)/
√
3 gives N = U and Li = 0, i.e., the boundary is a pure twist. It is

well-known, however, that this boundary can also be seen as a tilt boundary (see below).

This property can be detected only by considering the representations with larger misorien-

tation angles, i.e., it is not detectable within the scheme limited to disorientations. Similar

considerations are applicable to other boundaries; for instance, almost all low-Σ twist bound-

aries have also tilt character [17, 18]. In order to get complete geometric specification of a

boundary, all its representations need to be examined.

A more general argument against using disorientation is that its definition relies on one

of the five macroscopic boundary parameters (the misorientation angle), and in the case

of large-angle boundaries, there is no reason for distinguishing this particular parameter as

having more significance than the other four parameters.

5.2 Fortes decomposition

To avoid drawbacks of the decomposition of disorientations, Fortes [9] proposed to check

all boundary representations, and to ”choose the description involving the smallest angle of

tilt or twist, so as to make the boundary, as nearly as possible, a pure-twist or a pure-tilt

boundary.” It is shown below that this idea is applicable only to perfect error-free data.

We will denote the smallest possible twist and tilt angles by νF and λF , respectively.

Clearly, the Fortes method reveals the pure-twist and pure-tilt boundaries. E.g., for the

fcc coherent twin boundary considered above (U = (1, 1, 1)/3 and n = (1, 1, 1)/
√
3 ), with

the symmetry operation S = (0, 0,−1) representing 90◦ rotation about [0 0 1], the product
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U◦S = (0, 1,−1)/2 decomposes into N = 0 and Li = U◦S, i.e., the boundary is a 70.5◦ tilt

about [011]. Thus, one concludes that this boundary has a representation with vanishing

tilt component (λF = 0), and another with vanishing twist component (νF = 0), i.e., it

has both twist and tilt character. Generally, Fortes decomposition allows for identification

of all pure-twist and pure-tilt boundaries, and the angles νF , λF may serve as quantitative

measures of the twist and tilt contributions to a mixed boundary. Fig. 3 depicts the values Fig. 3

of the parameters νF and λF for a fixed misorientation (Σ7) and compares them to values

of ν and λ.

Sections through the distributions of νF and λF for the Σ7 misorientation are shown in

Fig. 4. Some roughness of the distribution of the angle νF can be easily noticed. To give a Fig. 4

numerical example, let us consider the decomposition of the boundary given by

n =

(
ζ, 0,

√
1− ζ2

)
and U = (

√
2− 1)n , (0 ≤ ζ ≤ 1) . (4)

In the presence of symmetry, the angle νF approaches 45◦ as ζ approaches 0; e.g., νF ≈ 44.97◦

for ζ = 0.0003. For ζ > 0, vectors of eq.(4) represent explicitly twist boundaries, but when ζ

equals 0, the boundary has also pure-tilt character and the angle νF of the twist component

drops from nearly 45◦ to zero. This example shows the discontinuity of the components

with respect to the macroscopic boundary parameters. With such discontinuities and lack

of smoothness, the twist and tilt components cannot be reliably estimated from error-affected

experimental data.

5.3 Distances in the boundary space

The next approach differs conceptually from the boundary decomposition but it has been

used for extracting information similar to that expected from the decomposition [18, 19].

The deviation of a boundary from the nearest pure-twist and pure-tilt boundaries can be

quantitatively described using a distance in the grain boundary parameter space. The dis-

tance must involve both misorientations and planes and account for equivalent boundary

representations [12, 20]. Here we use the same metric function as in [19]: the distance

between two boundaries equals to min

(√
Φ2 + (ϕ2

1 + ϕ2
2)/2

)
, where Φ is the angle of the

rotation relating the two misorientations, ϕi is the angle between boundary normals given

in the systems of the i-th grain, and the minimization is over all symmetrically equivalent

boundary representations1. Clearly, close boundaries separated by small distances have sim-

ilar macroscopic boundary parameters (and vice versa). The distances of a given boundary

to the nearest pure-twist and the nearest pure-tilt boundaries are denoted by δN and δL,

1One could define analogous distances based on disorientations, but such parameters would not bring in

anything new to our considerations. Therefore, and for brevity, we admit only these based on all equivalent

boundary representations.
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respectively. In particular, δN = 0◦ for pure twists, and δL = 0◦ for pure-tilt boundaries.

Example sections through the distributions of these parameters are shown in Fig. 5. Fig. 5

The distances δL to the nearest pure-tilt take the value of zero for the same boundaries as

the angles νF of twist components. Similarly, δN and λF vanish at the same locations in the

boundary space. Hence, δL and δN are expected to be correlated to νF and λF , respectively.

This is true for the distances δN and the angles λF , but the correlation between νF and

δL turns out to be relatively poor (Fig. 6). Although λF and νF are just rotation angles, Fig. 6

whereas distances δN and δL involve both rotation angles and angles between boundary nor-

mals, still the angles of components are frequently larger than the corresponding distances.

The maximal values of the considered parameters are

max(νF ) ≈ 45◦, max(λF ) ≈ 54.7◦ and max(δL) ≈ 7.4◦, max(δN ) ≈ 28.3◦ ; (5)

the data for δN and δL are cited after [19], the largest νF corresponds to the case described

above by eq.(4), and the largest λF is obtained by decomposition of U = (0, 1, 1)/(1 +
√
3)

with respect to n = (1, 0, 0).

The parameters δN and δL have a significant disadvantage: calculating them for a given

boundary is cumbersome. In practice, determining the nearest pure-twists and pure-tilts

requires application of optimization techniques. Consequently, computation times for large

boundary data sets become long. With the implementation used here [21], the time needed

for computing both δN and δL for 104 boundary segments on a personal computer was about

30 minutes.

5.4 ”Tilt/twist component (TTC)” parameter

Finally, let us consider an even simpler approach to quantification of twist and tilt contribu-

tions. It is linked directly to the equation defining tilt and twist boundaries (|n · u|= 0, 1).

Concretely, the contribution of the twist and tilt components is measured by the parameter

|n · u|; see [23]. Equivalently, besides |n · u|, the angle α between directions of n and u is

used [16]. In [24], the parameter |n·u| is referred to as TTC, and we will use this designation

also to α. Clearly, the TTC parameter is independent of the misorientation-angle. Since

|n · u| can be expressed via N2 and L2
i , the single TTC parameter is less informative than

the complete twist and tilt components, or than the pairs of twist and tilt angles ν and λ.

The TTC parameter is also affected by crystal symmetries: although is not influenced by

the grain exchange nor by the choice of the sense of n, it still takes a number of values. As

in [16,23–25], vectors u and n corresponding to a disorientation can be used, and this leads

to unique |n · u| and α. However, for large angle boundaries, there are no clear reasons for

ignoring other boundary representations, and using only disorientations has the drawbacks

of the approach described in subsection 5.1.
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Similarly as in Fortes decomposition, one may also eliminate the ambiguity by choosing

the axes leading to either minimal or maximal values of |n · u| or α. Such parameters have

not been used before. Although interpretation of the extremal values αN = min(α) and

αL = 90◦−max(α) of α differs from that of the distances δN and δL, these pairs turn out to

be close. Numerical tests for the cubic case indicate that αN ≥ δN and αL ≥ δL. Moreover,

αL and αN are not larger than about 10◦ and 29◦, respectively; cf. eq.(5). The distributions

of αL and αN resemble those of δL and δN (Fig. 7). More generally, the parameters αL and Fig. 7

αN are strongly correlated to δL and δN , respectively. These correlations are demonstrated

in Fig. 8. Fig. 8

Based on the closeness of the pairs (αL, αN ) and (δL, δN ), statistical results obtained

from experimental data using αL and αN are expected to be similar to corresponding results

based on δL and δN . On the other hand, the former are easier to compute than the latter:

the code is simpler, and the running time was about 103 times shorter.

5.5 Discrimination of near-tilt boundaries

The above shows a number of ways to characterize mixed boundaries. The considered

parameters are summarized in Tab. 1. The applicability of these quantities as measures of Tab. 1

mixed boundary geometry depends on objectives and circumstances of a particular analysis.

Because of their instability, the angles νF are not suitable for checking data affected by

even very small perturbations. This makes νF inapplicable to examination of experimental

boundary data. Moreover, small maxima of the parameters δL and αL as well as Figs. 5

and 7 indicate that deviations from pure-tilt boundaries are generally small compared to

remaining parameters. It is worth adding that in the random case, the mean value of δL

is only 1.6◦, and about 84% of boundaries deviate from pure-tilt by δL ≤ 3◦ [19]. These

numbers suggest that with cubic crystal symmetry, for boundaries to be reliably classified

as near-tilt, a relatively high experimental accuracy (1◦ or better) would be needed.

As the maximal distance to the nearest pure-twist boundary is quite large, and mean

distance is 11.8◦ [19], the accuracy required for classification of near-twist boundaries is

considerably lower. One may ask about the origin of this asymmetry between near-tilt and

near-twist boundaries. Although the formal conditions for the twist and tilt boundaries

look similar (|n · u |= 1 and 0, respectively), they determine very different entities in the

boundary space: twist boundaries are associated with three degrees of freedom whereas tilt

boundaries with four degrees. Therefore, the distributions of these boundary types in the

parameter space are different.

6. Analysis of mixed boundaries in a nickel-based alloy

To illustrate the above considerations, we analyzed the boundary data set ”Small IN100”
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of fine-grained nickel-based superalloy IN100 acquired by M.A.Groeber using 3D-EBSD.

The reference [26] provides details of the material processing history and a full description

of the method of data acquisition. The grain boundary distribution (GBD) in the space

of macroscopic boundary parameters and grain boundary energy as a function of these

parameters for a superset of ”Small IN100” are discussed in [27].

Our processing of the data consisted of reconstruction and meshing of the boundary

network (carried out using Dream.3D [28]), simplification of the mesh (by Qslim 2.0 [29]),

and calculation of various boundary distributions (carried out using in-house software).

The reconstructed set contained 1853 grains. The total number of boundary segments was

about 3.5 × 105. For illustration, a fragment of the investigated boundary network with

the actual mesh is shown in Fig. 9. Example sections through GBD are shown in Fig. 10. Fig. 9

They are similar to corresponding figures of [27]. The ubiquity of coherent twins visible in Fig. 10

microstructure images [26] is reflected by a very high peak at the Σ3 misorientation and

(111) plane.

The simplest way to evaluate the frequencies of occurrence of near-tilt and near-twist

boundaries is to calculate the distributions of the parameters listed in Tab. 1. Potential

peaks at zero would indicate presence of the boundaries of a given type. The distributions

were strongly affected by the high frequency of twins. In order to examine the impact of

the twins, distributions were also calculated for boundaries differing from Σ3 by more than

2◦. In this smaller set, the number of boundary segments was nearly 2.8× 105.

Let us start with the familiar distribution of disorientation angles – the most basic of

one-dimensional projection of GBD (Fig. 11). It has a very strong peak at 60◦, the result Fig. 11

consistent with the presence of twins. Because of experimental errors and data processing

methods, only points at the high-end (7◦ ≤ θ ≤ 15◦) of low-angle boundaries are reliable, and

the boundaries in this range are overrepresented. Besides that, the distribution is relatively

flat. For illustration, the disorientation angle distribution is presented in two forms; all

remaining distributions are shown only as multiples of corresponding random distributions.

The latter were obtained numerically by generating at least 106 random boundaries.

The distributions of the angles λ and ν of components of disorientations and of the TTC

parameter α are shown in Fig. 12. In terms of the locations of peaks, they clearly reflect Fig. 12

the partial information contained in Fig. 10. The distributions of λ and ν are dominated

by the (111) twists, in particular, by the coherent twin. The peak at α = 0◦ has the same

origin. For α exceeding 25◦, the distribution becomes uniform, i.e., close to the random

case; the latter observation applies also to α = 90◦ corresponding to tilts in the domain of

disorientations. Thus, the distribution of α, and also that of ν, show the absence of near-tilt

boundaries in the representations with the smallest misorientation angles.

The distributions of the smallest tilt angle λF , the distance to the nearest pure-twist
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boundary δN , and the minimal TTC parameter αN , are shown in Fig. 13. As one could Fig. 13

expect, there is not much difference in shapes of these functions. Let us focus on the graph

for δN . Elevated values near δN = 0◦ indicate that twist boundaries are overrepresented.

This is also true for the data without Σ3 boundaries, but the values are lower than in the

case of the complete data set. The width of the peak at δN = 0◦ is relatively large; based

on Figs. 10 and 12, it spreads beyond δN ≈ 10◦. Then, there is a minimum at δN near

21 − 23◦. These low values of the distribution for larger δN are attributed to the balance

requirement: if some data (near δN = 0◦) are above 1, there must be data below 1. This is

confirmed by the fact that the minimum becomes shallow when Σ3 boundaries are removed

and the maximum at δN = 0◦ diminishes. The results at the far end of the abscissa are

affected by large errors because of low probability of occurrence of such boundaries.

It remains to consider the population of near-tilt boundaries. The parameter νF , as not

stable with respect to perturbations of input data, must be excluded. The distributions

of δL and αL are shown in Fig. 14. Their reliability is low because of low resolution of Fig. 14

the investigated data. Moreover, as the probability of occurrence of boundaries strongly

decreases with growing δL and αL [19], so does the reliability of the distributions. For the

complete data set, the values of the distributions at the most reliable points near δL = 0◦ =

αL slightly exceed 1. This means that the tilt boundaries are overrepresented. The elevation

is attributed to the twin boundaries. For the set without Σ3 boundaries, the distributions

at zero are practically the same as in the random case.

Let us note that the one-dimensional distributions of Figs. 13 and 14 are complicated

projections of GBD. Such figures might summarize information on near-twist boundaries

scattered in the complete GBD. In the considered case, however, the figures do not really

provide any new facts beyond those easily deductible from the GBD. However, there is no

ground for expecting that this is generally true. The analyzed GBD is very simple: most of

its parts are close to random, and the only elevated values are these near (111) twists with

a very strong peak at the coherent twin boundary. Without such a dominating maximum,

and with higher experimental resolution and larger data sets, more detailed features of

GBDs may be revealed. In these cases, the functions depicting frequencies of near-tilt and

near-twist boundaries may provide information not apparent on GBDs.

7. Conclusions

Possible ways of analyzing mixed large-angle boundaries have been scrutinized. In the sim-

plest classification, the considered methods are either based on the boundary decomposition

into twist and tilt components or on other measures of deviations from pure-twist or tilt

boundaries. Furthermore, they are either limited to disorientations or take into account all

symmetrically equivalent boundary representations.
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The simplistic approaches limited to disorientations and ignoring other symmetrically

equivalent boundary representations (with parameters ν, λ and α) provide only partial

information about geometry of boundaries. Boundary characterization by these methods

is inconsistent with the definitions of twist and tilt boundaries based on the requirement

of existence of relationships between misorientation axis and the boundary plane (as the

existence cannot be detected without examining all symmetrically equivalent boundary rep-

resentations). In consequence, the approaches limited to disorientations are not suitable for

comprehensive studies of boundary geometry.

Closeness of a boundary to the twist or tilt geometries can be detected only by taking into

account all its representations. We analyzed three different sets of parameters as possible

measures of this closeness:

– the smallest angles (νF , λF ) of boundary components obtained using Fortes decomposition,

– properly defined distances to pure-twist or tilt boundaries (δL, δN ), and

– the newly introduced parameters (αL, αN ) defined as the extreme values of the angle

between the misorientation axis and the normal to the boundary plane.

The applicability of the Fortes decomposition and (νF , λF ) parameters to analysis of

boundaries is shown to be limited. It can be used for identification of ideal twist or tilt

boundaries, but it is not suitable for analysis of error-affected data because of instability of

one of the angles (νF ) to small perturbations of input data.

Consequently, the choice of approaches to experimental grain boundary data is confined

to the distances to pure-twist or pure-tilt boundaries (δL, δN ) and extreme values of the

angle between the misorientation axis and the normal to the boundary plane (αL, αN ).

Detailed analyzes show that the distances (δL, δN ) are strongly correlated with the angles

(αL, αN ) and as such, the pairs are expected to lead to similar conclusions. However,

computing the angles is considerably easier than getting the distances.

On the experimental side, as the deviations of boundaries from pure-tilt boundaries

(δL and αL) are relatively small (a couple of degrees), in order to discriminate near-tilt

boundaries high accuracy data are needed.
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Appendix

The derivations of the relationships listed in section 3 are sketched below for the sake of

completeness.

1. With a finite non-zero Rodrigues vector U and a unit vector n, the twist N about n and

tilt L1 about an axis perpendicular to n satisfying U = N ◦ L1 are given by eqs.(1).

Let x be the factor relating N to n, i.e., N = xn. Based on N · L1 = 0 and the formula for

composition of rotations one gets U ·n = (N ◦L1) ·n = (N+L1 −N×L1) ·n = N ·n = x.

Hence, one has N = (U · n)n and L1 = (−N) ◦U = (−(U · n)n) ◦U. Eqs.(2) are obtained

in analogous way.

2. The vectors L1 and L2 have equal magnitudes.

The vector L2 = L2 ◦ N ◦ (−N) = N ◦ L1 ◦ (−N) is obtained by rotating L1 by N, and

hence, the magnitudes of L1 and L2 are equal.

3. If L1 = L2, then either N = 0 or Li = 0.

Based on N ·Li = 0, the equality N◦L1 = L2◦N = L1◦N takes the form N+L1−N×L1 =

N+ L1 − L1 ×N or N× L1 = 0. The equalities N× L1 = 0 and N · L1 = 0 together with

N ◦L1 ̸= 0 implicate that either N or L1 must be equal to 0. Analogous statement applies

to L2.

4. The magnitudes of U, N and Li are related by eq.(3).

From U = N ◦ L1 and N · L1 = 0 follows 1 +U2 = 1 + (N + L1 −N × L1)
2 = 1 +N2 +

L2
1 +N2 L2

1 = (1 +N2)(1 + L2
1). Analogous steps lead to the relationship for L2.

5. The decomposition of U with respect to n gives the same angles as that with respect to

(ξu) ◦ n ◦ (−ξu), where ξ is an arbitrary real number.

One needs to consider the decomposition of U with respect to nξ = (ξu) ◦ n ◦ (−ξu)

into Nξ ◦ Lξ. The squared magnitude of the twist component Nξ = (U · nξ)nξ is given

by N2
ξ = U2 (u · ((ξu) ◦ n ◦ (−ξu)))2. A little tedious but simple calculation shows that

u · ((ξu) ◦n ◦ (−ξu)) = u ·n. Hence, N2
ξ = U2(u ·n)2 = (U ·n)2 = N2. The equality of N2

ξ

and N2 implicates the equality of corresponding twist angles. The equality of magnitudes

of tilt components Lξ and Li follows from N2
ξ = N2 and eq.(3). Similar calculations show

that the decomposition of U with respect to n gives the same angles as the decomposition

of (ξn) ◦U ◦ (−ξn) with respect to the same vector n.

6. The tilt angle λ satisfies the inequality λ ≤ 2α = 2arccos(|n · u|).
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From the first of eqs.(1), one has N2/U2 = ((U · n)n)2/U2 = (n · u)2. On the other hand,

based on eq.(3), one gets N2/U2 = N2/((1 +U2) − 1) = N2/(N2 + L2
i +N2L2

i ) = 1/(1 +

L2
i +L2

i /N
2) ≤ 1/(1+L2

i ). By combining these two relationships and using L2
i = tan2(λ/2),

one obtains cosα =|n · u|≤ 1/
√
1 + L2

i = 1/
√
1 + tan2(λ/2) = cos(λ/2) and λ ≤ 2α.
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Captions

Table 1: Parameters quantifying tilt and twist contributions to a boundary. Deviations

from pure-twists are listed in column (a). Column (b) contains parameters characterizing

deviations from pure-tilts. Maximal values of particular parameters for cubic crystal sym-

metry are listed in parentheses. The symbol ∗ marks parameters determined in the domain

of disorientations.

Figure 1: Schematic of the decomposition of U. The difference L1 − L2 (denoted by a) is

orthogonal to the plane containing U and N, i.e., U · (L1−L2) = 0 = N · (L1−L2), whereas

the sum L1 + L2 lies in this plane. The vectors b and ci mark sec(ν/2) (L1 + L2)/2 and

Li ×N, respectively.

Figure 2: Distributions of the twist angle ν (a) and the tilt angle λ (b) for the fixed Σ7

misorientation and variable boundary normal; cf. [22]. Stereographic projection is used.

Figure 3: Angles νF and λF of twist and tilt components for Σ7 and two sets of random

boundary planes: 106 planes showing the domain (gray) plus extra 103 planes to illustrate the

density (black). The arc marks points with coordinates ν and λ obtained by decomposition

of a corresponding disorientation.

Figure 4: Distributions of the smallest twist angle νF (a) and the smallest tilt angle λF (b)

for Σ7. The white circle in (a) marks one of the areas with high values of νF crossed by

thin lines with νF = 0◦. (The direction of the rotation axis is opposite to the one used in

Fig. 2 of [17].)

Figure 5: Distributions of distances δL and δN to the nearest pure-tilt (a) and to the nearest

pure-twist (b) boundaries for Σ7.

Figure 6: The angles of Fortes decomposition and distances to nearest tilt or twist boundaries

for 106 randomly generated boundaries (gray points). Black points represent boundaries

for low-Σ (Σ3 – Σ9) misorientations and low-index (absolute value ≤ 4) planes. Figures

illustrate the pairs νF and δL (a), λF and δN (b). The symbol ρ denotes the Spearman’s

rank correlation coefficient for the random data.

Figure 7: Distributions of the TTC parameter α (a) and the parameters αL = min(90◦−α)

(b) and αN = min(α) (c) for Σ7.

Figure 8: The angles αL versus δL (a), and αN versus δN for 106 randomly generated bound-

aries (gray points). Black points represent boundaries for low-Σ (Σ3 – Σ9) misorientations

and low-index (absolute value ≤ 4) planes. In (a), boundaries between the continuous lines

with δL ≤ αL ≤ 1.3 δL constitute 91.2% of all boundaries. In (b), boundaries between the

continuous lines with δN ≤ αN ≤ 1.3 δN constitute 92.3% of all boundaries. As above, ρ is
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the Spearman’s rank correlation coefficient for the random data.

Figure 9: A fragment of the boundary network of the investigated Ni-based alloy. In (a), dif-

ferent colors represent different grain orientations. In (b), different colors represent different

boundaries. The figure illustrates the mesh used for modeling the boundaries.

Figure 10: Sections through grain boundary distribution of the analyzed Ni-based alloy for

Σ3 (a) and Σ7 (b). They are similar to corresponding figures published in [27]. The GDB

was obtained in discrete form for individual equivolume bins in the space parametrized by

Euler angles (misorientations) and spherical angles (normals to boundary planes). As in [27],

11 bins per 90◦ were used to get (a) and 9 bins per 90◦ to get (b).

Figure 11: (a) Conventional form of the distribution of the disorientation angle for the

analyzed Ni-based alloy. Continuous line represents Mackenzie (random) distribution. (b)

The same distribution as in (a), but shown as multiple of the random distribution. Because

of data processing, only the points on the right side of the dashed line are reliable. In this

and the remaining figures, the bin size is equal to the inverse of density of displayed points.

Figure 12: Distributions of disorientation-based parameters λ (a) ν (b) and α (c) for the

investigated alloy. Disks represent results obtained from the complete data set, and crosses

correspond to the data without Σ3 boundaries.

Figure 13: Distribution of the smallest angle of tilt component λF (a), distribution of the

distance δN to the nearest pure-twist boundary (b) and distribution of αN (c) for IN100.

Disks represent results obtained from the complete data set, and crosses correspond to the

data without Σ3 boundaries.

Figure 14: Distribution of the distance δL to the nearest pure-tilt boundary (a) and dis-

tribution of αL (b) for IN100. Disks represent results obtained from the complete data

set, and crosses correspond to the data without Σ3 boundaries. Because of the shape of

the random distribution, the larger value on the abscissa the larger errors of the presented

result. This is illustrated by the error bars. Relative lengths of the bars represent only sta-

tistical errors linked to the number of counts. They do not include the errors in measuring

boundary inclinations and misorientations, which are the main cause of the flattening of the

distribution.
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(a) (b)

∗ angles of decomposition λ (62.8◦) ν (62.8◦)

Fortes decomposition λF (54.7◦) νF (45.0◦)

distances δN (28.3◦) δL (7.4◦)

TTC–extremes αN (28.7◦) αL (9.8◦)

∗ TTC α

Table 1:
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