
This is an electronic version of an article published in Philosophical Magazine Letters Vol.

86, No. 1, January 2006, 3745 (copyright Taylor & Francis). Philosophical Magazine

Letters is available online at: http://journalsonline.tandf.co.uk/

Surface area of coarsening cellular structures

A.Morawiec

Laboratoire d’Etude des Textures et Application aux Matériaux,
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Abstract

Three dimensional cellular structures serve as models of foams and annealed metals. Such

structures coarsen over time. Assuming that cell growth is driven by face curvature, a

general formula for the rate of surface area change is obtained. Based on it, a new von

Neumann–type relationship linking the rate to topology of individual regular cells with

spherical–cap faces is derived. Moreover, the general formula is applied to structures with

arbitrary cells. In this case, the rate of total area change is related to structure topology

and one geometric parameter – the average difference between principal curvatures of

faces. Assuming further that the structure is self–similar, we obtain expressions for the

dependence of structure parameters on time. This opens the opportunity to examine

conditions, for which the growth of self–similar structures follows the ”parabolic law”.

Also the effect of topological transformations on the coarsening process is considered.
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Introduction

Ideal cellular structures are archetypes of dry foams and annealed polycrystalline metals.

An important aspect of understanding such structures is figuring out how they evolve

over time. Some of the cells grow while other shrink and eventually disappear. The

disappearance of cells causes an increase of the average cell size. Therefore, the process is

referred to as coarsening.

A cellular structure reduces its total surface area due to surface tension. In foams, long

time mechanisms involve diffusion of gas through cell walls. Assuming constant surface

tension and constant diffusion coefficient, the pressure difference in two neighboring cells

is proportional to the curvature of their common boundary. The resulting boundaries have

constant curvatures and move towards their concave sides. For a quantitative description

of the movement and structure evolution, boundary velocities are needed. The commonly

used (von Neumann’s) kinetic postulate is that the velocities are proportional to boundary

curvatures. The postulate underpins one of the most frequent motifs in analysis of two

dimensional (2D) cellular structures — the von Neumann’s law [1, 2]. Let κ denote local

curvature of cell sides. For a given cell, the rate of area change Ȧ ≡ dA/dt is proportional

to the integral of the interface velocity v over the cell perimeter L and Ȧ ∝ ∫
L v ∝ ∫

edges κ.

With local equilibrium, the angles at triple points are 2π/3, and for an n sided cell
∫
edges κ =

2π − n(π/3). Hence, one gets Ȧ ∝ n− 6. The relationship is remarkable because the rate

of area change does not depend on the cell size, shape or environment but only on the

number of its sides: an n–sided cell is stationary if n = 6, it grows (shrinks) at a constant

rate if the number of sides is larger (smaller) than 6.

The von Neumann’s law is not entirely strict. When writing Ȧ =
∫
L v, a tacit as-

sumption is that the velocity is continuous along the boundary. For ’polygonal’ cells, the

principle does not take into account the change of the area which occurs at vertices. More

importantly, the assumption of interface velocity to be proportional to the curvature does

not conform to the requirement that the junction angles are 2π/3 [3, 4]. Nevertheless, the

law is a very good approximation, and it is at the core of investigations on 2D structures.

In three dimensions (3D), assuming the von Neumann’s kinetics means that boundaries
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of cells move with velocities proportional to their local mean curvatures; surfaces having

zero mean curvature – which are known to minimize surface area – are immobile. Anal-

ogously to the 2D case, for a 3D particle having a surface moving with such velocity, the

rate of volume change is proportional to
∫
faces H, where H is the mean curvature. How-

ever, the analogy stops here because there is no simple relationship between
∫
faces H and

topology of the cell. As a matter of fact, it is possible to create examples showing that

an absolute 3D equivalent of 2D von Neumann’s law cannot be derived; two cells of a valid

structure may have the same number of faces but different
∫
faces H and, consequently, dif-

ferent rates of volume change. Therefore, considerable efforts have been made to formulate

more sophisticated 3D analogues of the von Neumann’s law. There is much interest in the

relationship proposed by Glazier [5]. Based on numerical simulations, he suggested that

a normalized average volume of cells having fixed number of faces is determined by that

number. For discussions on that suggestion see [6, 7, 8, 9].

Previous attempts to generalize the von Neumann’s law to 3D have been focused on

the volume of cells and the rate of its change, whereas we provide a formula for the rate

of change of surface area. Based on the kinetic postulate of curvature driven motion, we

derive a relationship governing the area change rate. The relationship can be seen as a

basis for getting a 3D analogue of the von Neumann’s law. It is applied to coarsening of

individual regular cells having spherical faces; their rate of area change is expressed through

the number of cell faces. The general formula for the area change rate is also used to explore

the evolution of self–similar structures; this leads to expressions for time–dependence of

the total surface area, the number of cells, and the average radius of cells. Moreover, the

influence of topological rearrangements on the rate of area change is evaluated.

Rate of area change for an individual cell

An ideal 3D cellular structure (’polyederschaum’) consists of space–filling ’polyhedral’ cells

satisfying Plateau’s rules. (Smooth faces separate neighboring cells, each vertex is common

to four cells and four edges, and each edge is shared by three faces meeting at the angle of

2π/3.) Let the symbols V , E and F denote the numbers of cell vertices, edges and faces,

respectively. Since three edges of a cell meet at one vertex, and each edge has two ends,
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E = 3V/2. From Euler theorem, the number of faces equals F = E − V + 2. Hence, one

of the three cell parameters V , E and F determines the other two, and the parameters are

used here interchangeably.

The sign of the mean curvature is determined by surface orientation. The latter also

determines the direction of the vector n normal to the surface. Thus, Hn does not depend

on the orientation. With the curvature driven motion, the velocity v of a boundary segment

is assumed to be given by v = µHn with µ > 0.

For a 3D particle having ’smooth’ surface S, the rate of change of surface area is related

to the interface velocity v by Ṡ = −2
∫
S(v · n)H; see, e.g., [10]. Similar relationship can

be applied to a polyhedral cell by adding the area change χ caused by moving edges and

vertices

Ṡ = −2
∫

F
(v · n)H + χ ,

where the integration is performed over the set F of all faces of the cell. By neglecting the

effects caused by the curvature of the edges and these occurring at vertices, the last term

can be expressed as

χ = 3−1/2
F∑

i=1

∫

Pi

v · ni , (1)

where Pi is the perimeter of the i-th face, and ni is an outward directed normal to the i-th

face (Fig. 1). With surface velocity proportional to the mean curvature, one gets the key Fig. 1

expression for the rate of area change

Ṡ = −2µ

∫

F
H2 + 3−1/2µ

F∑

i=1

∫

Pi

Hn · ni . (2)

The squared mean curvature is related to the Gauss curvature K via H2 = K +∆2, where

∆ is half of the difference between principal curvatures; H2 equals K if the surface is a

spherical–cap. From the Gauss–Bonnet theorem, for a given cell,

∫

F
K = 4π − V κV −

E∑

j=1

κE
j , (3)

where κE
j is the Gauss curvature ’contained’ in the j-th edge, and κV = 2π−3 arcsec(−3) ≈

0.5512856 denotes the curvature ’contained’ in an equilibrated vertex.
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The last terms of eqs (2) and (3) are difficult to estimate for cells of arbitrary shapes

but they can be expressed analytically for simple regular ’polyhedra’ having spherical faces.

Moreover, the complicated terms cancel out in the expression for the rate of total surface

area. These two cases are considered below.

The rate of area change for regular cells

One of the approaches to foam evolution is to assume that structures consist of cells

satisfying Plateau’s rules and having spherical faces [6]. In particular, regular cells of

this type are considered [11, 12, 13]. For a regular cell, F determines the solid angle

corresponding to one face. Since the polyhedra are trivalent, the number of sides of each

face ns equals 2E/F . The curvature of the faces is calculated from the condition that the

spherical faces meet at the angle of 2π/3. Ultimately, the complete shape of the cell is

determined by F . Although, regular cells are constructable only for F = 3, 4, 6 and 12,

formulas are assumed to hold for all F ≥ 3.

We use results from [12, 13] to determine the last terms of eqs (2) and (3). With ∆ = 0

and constant curvature H = HF , one has
∫
F H2 =

∫
F K, and the last term of eq.(3) is

given by
∑E

j=1 κE
j = EκE , where κE = 2 arcsin

(
3−1/2HF

)
, 3HF /2 =

(
2(3− 4c2)

)1/2 − c

and c = cos(π/ns). Moreover, since HF is positive for convex faces, one has n ·ni = −1 and
∑F

i=1

∫
Pi

H n · ni = −HF
∑F

i=1

∫
Pi

1 = −2EHF lE = −31/2EκE , where lE is the length of

a single edge.

Now, taking into account the above components, eq.(2) can be expressed as

Ṡ = −µΓ with Γ ≡ 8π −EκE − 2V κV . (4)

Since Γ depends on one independent topological parameter (Fig. 2), this relationship can Fig. 2

be seen as an analogue of von Neumann law applicable to regular cells.

A different formula of this kind was proposed by Glicksman [12]. In his derivation,

the effect corresponding to χ is neglected, and the formula contains only the contribution

related to the curvature of faces. Consequently, the resulting Ṡ is never positive, i.e. a

regular cell would loose area no matter how many faces it had.

Also Hilgenfeldt et al. [13] considered an analogue of von Neumann’s law in relation
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to regular cells. From their result, which is given as the rate of volume change, one can

calculate the rate of change of area versus number of cell faces. Predictably, it turns

out to be different than the rate given by eq.(4); see (Fig. 2). The reason is that the

underlying ’empirical’ Glazier’s formula used in [13] does not fully conform to the conditions

of curvature driven coarsening.

The rate of change of total surface area

Considerations of previous section concern individual cells of particular shape; as for arbi-

trary structures, eq.(2) allows for estimating the rate of change of their total surface area.

Let C be the number of all cells. We will add the index m = 1, . . . , C to already defined

symbols to numerate cells. With Sm denoting the surface area of the m-th cell, the total

surface area ST is given by ST =
∑C

m=1 Sm/2. For three neighboring cells, the sum of

three Gaussian curvatures ’contained’ in their common edge is zero; therefore, the sum

over all cells of the last terms of eq.(3)
∑E

j=1 κE
j also vanishes [14, 15]. Moreover, within

our approximation, arguments analogous to those given in [16] are applicable: at a triple

junction, a local change of area of a given face due to a displacement of the junction is

compensated by the area changes of the other two faces; see Fig. 3. Hence,
∑C

m=1 χm = 0. Fig. 3

Therefore, the rate of change of the total area is governed by ṠT = −2µ
∫
FT

H2 or

ṠT = −µC
(
4π − κV V

)− 2µ

∫

FT

∆2 , (5)

where FT stands for all faces of the structure, and V =
∑C

m=1 Vm/C is the mean number of

cell vertices. The analogy of eq.(5) to the von Neumann relationship is spoiled by
∫
FT

∆2;

however, it is unlikely that a better analogue can be obtained without taking additional

assumptions.

Let VT be the number of all vertices in the structure; VT = CV /4. Topological trans-

formations (Fig. 4) change the value of −µC
(
4π − κV V

)
= −µ (4πC − 4κV VT ) and conse- Fig. 4

quently the rate ṠT . (The change of
∫
FT

∆2 is negligible at the instant of transformation.)

For a 3D neighbor switching or face elimination (referred to as +T1, and causing C → C,

VT → VT − 1) the change is −4µκV , and for the disappearance of a tetragonal cell by

shrinking (T2 causing C → C − 1, VT → VT − 3), it is +µ(4π − 12κV ). Thus, the former
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transformation is associated with acceleration of the surface loss, and the latter – with

deceleration of the process.

Topology puts a lower limit on the integral ∆2. Since surface tension acts towards re-

duction of ST , the rate ṠT is non–positive. Hence, (5) leads to
∫
FT

∆2 ≥ C
(
κV V − 4π

)
/2.

It is easier to interpret this inequality using the average value of the integral
∫
Fm

∆2 per

cell; let it be denoted by ∆2. The average is given by ∆2 = (2/C)
∫
FT

∆2, and it is bounded

by

∆2 ≥ κV V − 4π .

This inequality exposes a formal limit on the applicability of models with cells having

spherical faces: for such cells ∆2 = 0, and the models are applicable only to structures

with V ≤ V ∗ ≡ 4π/κV ≈ 22.795.

Kinetics of self–similar structures

The conventional definition of self–similar structures is based on the cell size distribution

f = f(R, t), where R is the ’volume equivalent’ radius of cells: an evolving cellular structure

is self–similar if the distribution of cell sizes scaled by average radius R ≡ ∫∞
0 Rf dR, is

constant in time. Formally, this means that the product f(R, t)R(t) does not depend on t.

Let x = R/R and P (x) ≡ f(xR, t)R(t). Since Rn ≡ ∫∞
0 Rnf(R, t) dR = R

n ∫∞
0 xnP (x) dx,

the ratios pn ≡ Rn/R
n do not depend on time either.

The total volume of all cells is constant. Without loosing generality, this volume is taken

to be unity. From the time–independence of p2 and p3: total volume = 1 = Cq3R
3, and

ST = Cq2R
2
/2, where q3 = 4πp3/3, and q2 is constant for a given self–similar structure.

Hence, ST R = q2q
−1
3 /2 = const and S3

T C−1 = q3
2q
−2
3 /8 ≡ α = const. These relations

combined with (5) lead to the following formulas for time–dependence of ST , C and R:

S−2
T − S−2

T0 = α−1 Ψ(t) ,

C−2/3 − C
−2/3
0 = α−1/3 Ψ(t) ,

R
2 −R

2
0 = 2q−1

2 Ψ(t) ,

where

Ψ(t) ≡ 2µ

(
4πt−

∫ t

0
(κV V −∆2) dt

)
,
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and ST0, C0 and R0 denote initial values of ST , C and R, respectively. It is noteworthy

that since the average surface area of cells S = 2ST /C satisfies S − S0 = 2Ψ(t), the

function Ψ(t) has a simple interpretation: it is half of the total gain in the average surface

area of cells. The relationship known in literature as the ’parabolic law of grain growth’

(proportionality of R
2 −R

2
0 to t) follows if κV V −∆2 is constant in time.1

If V is assumed to be constant in time, due to the non–negativity of ∆2, one gets the

lower bound on Ψ(t)

Ψ(t) ≥ µβt ,

where β ≡ 2(4π − κV V ). Structures involving ∆2 coarsen faster than those corresponding

to the bounding case Ψ(t) = µβt. However, the bound is meaningful only if V < V ∗. It

is also interesting to note that the constraint V = const allows for estimating frequencies

of topological events: Let us assume that the structure changes its topology only through

the elementary processes T1 and T2. The rearrangements ±T1 cause V = 4VT /C →
4(VT ∓1)/C, while disappearance of a tetragonal cell leads to 4VT /C → 4(VT −3)/(C−1).

If the number of −T1 exceeds that of +T1, V cannot be constant. For V to be constant, the

frequency f1 of net face elimination events and the frequency f2 of cell disappearance events

must be such that the ratio of f2

(
4(VT − 3)/(C − 1)− V

)
and f1

(
V − 4(VT − 1)/C

)
is 1.

For large C, this means that the ratio of the frequencies is f1/f2 = V /4 − 3. Of the two

processes T1 and T2, only the latter causes disappearance of cells, i.e., f2 = −Ċ. Knowing

the ratio f1/f2, the dependence of f1 on time can be determined.

Summary

Application of the postulate of curvature driven motion to coarsening of ideal cellular

structures leads to formula (2) expressing the rate of cell area change through integrals

involving the mean curvature of faces. The analysis gets simpler in specific cases. For an

individual regular cell with spherical–cap faces, the rate depends only on the number of

faces. Moreover, the change rate of structure total area is expressed through topological

quantities and the (non–topological) average of difference between principal curvatures of
1With a more restrictive definition of self–similarity demanding all dimensionless characteristics to be

time independent, the parabolic law follows directly (because κV V and ∆2 are dimensionless).
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surfaces; that expression is further simplified, if the structure is self–similar. Although the

resulting eqs (4) and (5) are not true 3D forms of the von Neumann’s law (the first one is

based on restrictive assumptions, and the second one involves non–topological parameter),

they seem to be its closest analogues currently available via purely theoretical considera-

tions based on the (von Neumann’s) kinetic postulate. Since the ideal cellular structure

is an important benchmark for numerical treatment of foam and polycrystalline growth,

these theoretical results can provide a support for testing numerical models of physically

realistic 3D structures.
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Captions

Figure 1: Schematic illustration of the derivation of χ. The shift of the two lines by δ1 and

δ2 leads to the increase of their length by s1 + s2 = (δ1 + δ2)/
√

3. There are other cases

with slightly different geometry (e.g., if δ1 > 2δ2) but all are taken into account in eq.(1).

Figure 2: The dimensionless factor −Γ = Ṡ/µ versus the number of faces F for regular

cells (stars). For comparison, the von Neumann–type relationship of Glazier applied to

regular cells [13] gives results marked by diamonds. (All diamonds are below stars.)

Figure 3: Schematic 2D illustration of the relationship
∑

m χm = 0 for a triple junction.

The junction A of gray boundaries 1, 2 and 3 meeting at the angles 2π/3 is displaced to

B; the boundaries at the new location are marked in black. Since |BC | + |BE |=|AD |,
the loss |AD | in length of boundary 1 is compensated by the gains |BC | and |BE | for

boundaries 2 and 3, respectively.

Figure 4: Topological transformations T1 and T2.
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