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Abstract 

 

Thanks to the progress in computer control of electron microscopes and in microscope cameras there 

is a strong trend towards automatic analysis of electron diffraction patterns. Such analysis allowed for 

creation of fully automatic orientation imaging - an important technique of investigation of 

polycrystalline materials. Two essential parts of the analysis are the indexing of the patterns and the 

determination of orientations. We are particularly concerned with systems using transmission electron 

microscopy (TEM) and Kikuchi patterns; with small solid angle covered by these patterns, indexing is 

a challenging problem. The indexing procedures are expected to be fast and reliable even in the 

presence of experimental errors in geometric parameters of the patterns. The first step towards optimal 

indexing is to formalize the problem. It is shown that indexing can be reduced to matching two sets of 

points: “Two point sets � and � are given. Determine a rotation carrying the largest subset of � to a 

position approximating a subset of �.” Some new algorithms solving this problem are proposed. They 

are based on the generalized Hough transform with the rotation space as the parameter space. In the 

simplest case, a pair of points - one point from each set - contributes to rotations along a curve in the 

rotation space. After contributions are made by all pairs, the cell in the rotation space which received 

the largest number of contributions is considered to represent the orientation of the crystallite. Once 

the orientation is known, one can easily assign Miller indices to reflections. 

 

Keywords: Transmission electron microscopy; Diffraction; Pattern matching; Generalized Hough 

transform.
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Introduction 

 

One of the important aspects of the investigation of polycrystalline materials is the determination of 

the topography of crystallites. This can be done by measurements of local orientations. There are a 

number of methods to determine crystal orientations from electron diffraction patterns. Particularly 

suitable for that purpose is the family of the so-called K-line diffraction patterns [1] which comprises: 

X-ray Kossel patterns, Kikuchi patterns, convergent beam electron diffraction (CBED) patterns, 

electron backscattering diffraction (EBSD) patterns and channeling patterns. 

‘Manual’ analysis of diffraction patterns is time consuming and prone to errors. Therefore, there 

is a trend towards fully automatic procedures. Such procedures allow for orientation mapping. The 

orientation mapping techniques were originated in mid-eighties using Kossel patterns [2]. Nowadays, 

orientation maps are created based on a step-by-step beam scan on computer controlled electron 

microscopes equipped with digital cameras. At each step, a diffraction pattern is acquired and indexed, 

and an orientation is determined. The automatically generated orientation maps complement 

conventional contrast images with quantitative information on grain orientations. Particularly 

successful are orientation mapping systems using scanning electron microscopy (SEM) and EBSD 

patterns. EBSD/SEM mapping is already a well established technique of characterization of 

polycrystalline materials [3,4].   

Here, we are focused on indexing applied to orientation mapping based on transmission electron 

microscopy (TEM) and Kikuchi patterns [5]. The approach is similar to that of SEM/EBSD systems. 

The resulting maps have relatively good spatial resolution and good accuracy in relative orientations. 

These two features are important for ultra-fine microstructure and sub-grain characterization. On the 

other hand, in the case of TEM, indexing is relatively complex because large Milller indices of the 

diffracting planes must be taken into account. The TEM orientation mapping provides results 

complementary to those of SEM/EBSD systems.  

It must be mentioned that TEM orientation maps can also be obtained by the so-called ‘Dark 

Field Scanning’ with orientation at a given point determined from intensities corresponding to various 

incident beam directions [6]. Moreover, a mapping system employing selected area diffraction (spot) 

patterns and template matching has been created recently [7]. These are time efficient approaches, 

which do not employ indexing procedures of the type described here. However, in both cases, the 

orientation accuracy is relatively low.  

The standard analysis of K-line diffraction patterns is performed in two stages: line detection and 

indexing (Fig. 1). (In the case of Kossel patterns, the first stage is the detection of conics.)  Line 

detection is done either ‘manually’ or by using automatic procedures. Although, automatic line 

detection is not a subject of this paper, we would like to note that for better performance of line 

detection algorithms, specific features of diffraction patterns must be taken into account, and therefore, 

dedicated programs are written for that purpose; to our knowledge, all currently maintained systems 
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use the Hough transform, which is a robust, effective and easy to understand method based on an 

accumulation in the parameter space. A Kikuchi diffraction pattern shows deficit and excess lines. 

Therefore, separate lines are detected, and then lines with similar inclinations (i.e., nearly parallel) are 

grouped together to create line pairs. In the case of EBSP, large consolidation of images is used and 

usually diffraction bands are detected. Locations of line pairs or bands are used as an input for 

indexing. 

Generally, indexing or assigning Miller indices to diffraction lines or bands can be performed 

without knowing the crystal structure or its orientation. Here, the term ‘indexing’ is used in a narrow 

sense, i.e., it is assumed that the structure of the material is known. Thus, it is also known, which 

reflections are forbidden and which are detectable. In principle, intensities of lines or bands can be 

used. In practice, it is sufficient to index diffraction patterns based on the geometry without using 

intensities of particular reflections, i.e., only the “on-off” case plays a role. 

K-line diffraction patterns of different types have the same diffraction geometry, and the same 

principles are applicable for indexing in all these cases. Differences lie in the already mentioned type 

of input data (bands, line pairs, single lines) and in the solid angle covered by the detector. That angle 

is related to the sample-to-detector distance (effective camera length) and is relatively small for 

patterns originating from TEM. Roughly, the smaller the acquisition angle, the higher index reflections 

must be taken into account, and this has an influence on the reliability of the indexing results.  

Orientation mapping is the most obvious reason for development in automatic indexing. 

However, there are other situations, in which automatic indexing is very useful. In particular, this 

concerns cases in which there is interest in solving single patterns, like in residual strain determination 

or in analysis of a specific interface. 

Indexing procedures are expected to be general (applicable to arbitrary crystal symmetries and 

structures), robust and fast. There are a number of different algorithms used for indexing [8-11]. All of 

them were created based on a ‘trial and error’ search for an approach that gives satisfactory results. On 

the other hand, the ideal situation would be to formalize the indexing problem and to index the 

patterns by an algorithm proven to be optimal. The goal of this paper is to present an unknown formal 

side of indexing. It will be shown that an approach similar to Hough transform can be used for solving 

the indexing problem. This new heuristic approach turns out to be a generalization of some existing 

indexing procedures and it allows for a perspective view on the indexing in general. It is also 

instructive because it explains indexing based on the well understood procedure of Hough transform. 

 

Formal aspects of indexing and orientation determination 

 

Generally, indexing is performed by matching geometric features of the diffraction pattern in the 

sample reference frame with the corresponding features obtained from crystallographic data. More 
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precisely, reciprocal lattice vectors acquired from an experimental pattern are matched with vectors 

calculated from crystallographic data. 

It is convenient to represent the data in two Cartesian reference frames, one attached to the 

sample, the other one - to the crystal:  

– For a given Kikuchi pair, the coordinates of the reciprocal lattice vector g in the sample reference 

frame can be calculated directly from parameters of detected lines or bands based on the Kossel cone 

equation
1
 g·g =±2k·g, where k represents the wave vectors of reflected beam. See Fig.2.  

– In the crystal coordinate system, the Cartesian coordinates of the reciprocal lattice vector h 

corresponding to the reflecting plane h*=(h k l) are given by h =A
-1
 (h*)

T
, where the (ij) element of  A 

is the j-th Cartesian component of the i-th direct lattice basis vector.  

For a given pattern, one has two figures: �,– composed of all g vectors related to detected 

reflections, and � – composed of all h vectors related to potentially detectable reflections in the 

pattern. The indexing is done by matching g vectors with h vectors, or more precisely, by determining 

a subfigure of � which is congruent to �. Let the matrices G and H be built of all available vectors g 

and h, respectively, as matrix columns. Apart from experimental errors, there exists a rotation 

transforming vectors of � on certain vectors in �. Thus, there exist a proper orthogonal matrix O such 

that 

 

O G = H P ; 

 

P is an unknown rectangular matrix with zero entries everywhere except the value of 1 at each entry 

(mn) such that the  m-th h vector corresponds to the n-th g vector (i.e., there is exactly one ‘1’ in each 

column). The matrix P represents the assignment (indexing) problem and O corresponds to the 

orientation determination problem.  

Once O is known, it is straightforward to determine P by comparing columns of OG with H. And 

vice versa, knowing P, one can determine O: Assuming that the assignment is known, there is a 

standard procedure for matching vectors;  the issue is equivalent to the (Procrustes) problem of getting 

the ‘best’ orthogonal matrix O transforming G on H’=HP. The problem is linear and its solution has 

been described numerous times [12-16].  We will refer to it as spherical regression. 

It is obvious that errors in line detection are inevitable. In particular, the accuracy of the line 

parameters is limited and the matrix OG is only approximately equal to HP. Therefore, it is natural to 

portray the indexing problem as a modification of the Procrustes problem: find P and O minimizing 

|HP – OG |
2
, where | · | denotes the Frobenius norm.  In this formulation, the indexing problem lies in 

combinatorial (P) and continuous (O) optimization. 

                                                           
1
 The relationship follows directly from the Laue equation. 
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However, another important type of errors are spurious lines or bands. These errors lead to 

illegitimate g vectors. This, in turn, means that only a part of � can be actually congruent to a 

subfigure of  �. The simplest approach to this complication is to eliminate spurious g vectors by 

considering subfigures of �, and to use some additional criteria of accepting a solution for a given 

subfigure.
2
  

For solving similar problems in computerized imaging Rangarajan, Chui and Bookstein [17] 

proposed a ‘softassign matching’. The mixed (combinatorial + continuous) problem is replaced by a 

purely continuous nonlinear problem. The matrix representing combinatorial part of the problem is 

allowed to have continuous entries but its evolution in the optimization process is guided by additional 

constraints and barrier functions. 

Allowing for spurious vectors is an integral part of a certain issue considered in computational 

geometry. The ‘largest common point set’ problem is usually formulated in terms of point sets and in a 

more general framework: Given two point sets � and � and a positive number ε, determine the largest 

subset of � such that there is an isometry carrying � to a position in which each point of the subset is 

not further than ε from a point of � (e.g., [18]). There is a considerable interest in the ‘largest common 

point set’ problem because of its applications to determination of structural similarities in 

macromolecules and recognition of molecules. What matters here is that with the isometry being a 

proper rotation and points of � and � identified with their position vectors bound to the fixed center of 

rotation, the largest common point set problem is actually a mathematical formulation of the indexing 

problem. The term 'constellation problem' is sometimes used to describe point matching (e.g., [19]). 

However, it fits better the limited case with isometric transformations limited to rotations, and we use 

it in this narrow sense. 

 

Indexing as the generalized Hough transform 

 

There is an approach to the indexing/orientation determination problem, which provides a family of 

solutions and sheds some light on indexing in general. The methods can be seen as heuristic solutions 

to the constellation problem. They are based on rating orientations by making an accumulation in the 

orientation space. 

Accumulation along curves 

Let g and h denote normalized vectors g and h, i.e., g = g / | g |  and h = h /| h |. Given g and h, the 

accumulation is made at all rotations transforming g on h. There is a relatively easy way to calculate 

                                                           
2
 Formally, P must be allowed to have some zero columns, and one needs to rewrite our basic equation as  O G 

P’ = H P , where the matrix P’ is like the identity matrix except that the 1’s on the diagonal of P’ are allowed to 

be replaced by zeros if they correspond to spurious line pairs or bands. The optimization procedure needs a 

modification because one must minimize the number of zero columns in P and P’. 



 6 

the parameters of such rotations. Let R(x, ω) be the special orthogonal matrix of the rotation by the 

angle ω about the axis determined by x. It can be shown that for g+h  ≠ 0, the matrix  

 

O(ω) = R(g+h, π) R(g, ω) 

 

carries g on h, i.e. O(ω)g = h; see, e.g., [20]. For ω given by the numbers between 0 and 2π, the 

rotations corresponding to O(ω) cover a closed curve in the parameter space. Rotations on this curve 

are potential solutions to the indexing problem. If the considered h actually matches the considered g, 

one of these rotations is a true solution. In reality, the g vector may correspond to a different vector of 

�, and this means that all other vectors of this set must be taken into account. Ultimately, all pairs of 

vectors - one vector from � and one from � - are used to make the accumulations along corresponding 

curves in the rotation space.  

Congruent subsets of � and � lead to accumulation along curves intersecting at one point 

corresponding to the rotation caring one subset onto the other one. Since we are looking for the largest 

matching subsets of � and �, it is enough to locate the maximum in the accumulator space; the 

maximum corresponds to the parameters of the sought rotation. This approach to orientation 

determination and indexing can be seen as a form of the generalized Hough transform. 

The above argumentation is based on the assumption of an exact congruency between the largest 

matching subsets of � and �. When the match is only approximate, the curves do not intersect at a 

point but are located at some distances from the optimal rotation. This can be taken into account by 

replacing the sharp curves by smooth distributions. Von Mises-Fisher distribution is suitable for this 

purpose [21]. 

A simpler way of locating the maximum is to partition the accumulator space into cells, and to 

take the center of the cell with the largest accumulation as the matching rotation. The resolution of the 

method is linked to the cell size, and the latter must be related to the level of experimental errors. The 

partitioning of the parameter space is a bit complicated because the (rotation) space is curved and 

cannot be parameterized without some singularities. Moreover, the accumulation must be scaled by 

the ‘invariant volume’ of the cells. Therefore, some parameterizations (e.g., the so-called isochoric 

parameters [22]) turn out to be convenient while other parameter sets (e.g., Euler angles, which are 

affected by 'gimbal lock') are not. 

Since normalized vectors g and h were used in the above considerations, g and h with 

considerably different magnitudes are taken into account as a possible match. This can be easily 

avoided: Knowing the bandwidth or a distance between a pair of Kikuchi lines, one can estimate the 

magnitudes of g vectors, and the magnitudes of h vectors are directly available. If the difference in 

magnitudes is beyond certain threshold, the pair g and h may be rejected as a possible match. For 

many pairs, this rejection step allows for skipping the accumulation in the parameter space. 
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In the above considerations, it was assumed that g ≠ -h, i.e., there was no accumulation at some 

rotations by π. Frequently, such rotations can be excluded as possible solutions based on some 

additional arguments. (For instance, the largest rotation angle necessary to describe all orientations of 

a cubic crystal is 62.8°.) If there are no such arguments, one can match � to � transformed by a 

known rotation so the cases with g ≈ -h are avoided. 

Matching pairs of vectors 

Now, let us take a step forward. Instead of using one vector from each set, one may take a pair (or 

doublet) and determine a rotation carrying a doublet from � on a doublet from �. This makes sense 

only if the doublets are approximately congruent. Congruency can be checked by comparing vector 

magnitudes and the angle between the vectors. If the doublets differ too much, they are not accepted as 

a possible match; otherwise, accumulation is made in the rotation space at the rotation determined by 

the fore mentioned spherical regression. This is again a form of the generalized Hough transform. This 

time, the accumulation is made not along curves but at points of the accumulator space. After 

considering all different doublets from � and �, a solution of the indexing problem is obtained by 

locating the maximum in the accumulator space. As in the previous case, this can be done by 

partitioning the parameter space or by using smooth (von Mises-Fisher) distributions. 

A considerably more convenient alternative approach is to create a list of potential solutions. A 

rotation determined from two doublets is appended to the list only if it differs by a threshold from each 

of the already saved solutions. If the rotation is close to one of the solutions, the accumulation ascribed 

to that solution is increased, and the solution is corrected by taking the weighted average [23] of the 

solution and the rotation.  

Higher order procedures 

Two doublets already determine a point in the rotation space. Thus, adding new vectors to such 

doublets and using triplets, quadruplets (generally, n-tuples) can only sharpen criteria for the 

congruence of the considered subsets. The procedures of order one and two, which were described 

above, are in a sense elemental in comparison to higher order procedures involving n-tuples (with 

n>2).  

Such higher order procedures have been already applied to indexing. A third order 'voting' has 

been used for indexing diffraction patterns in one of the EBSD systems [8]. Moreover, there is a 

relation between some of the strategies used for indexing Kikuchi patterns [9] and the approach with 

highest possible order n equal to the number of vectors in �; in this case, one begins with all 

determined g vectors and uses the rejection step to reach the solution. 

It is worth noting that the reliability of results depends on the order n. For instance, we have 

compared reliability of the third and the fourth order procedures by applying them to simulated 

Kikuchi patterns. The former turned out to be better. This indicates that it might be even better to use 

the second order. It is planned to verify this indication. 
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Final remarks 

 

Automatic indexing of K-line diffraction patterns is essential for further development of local texture 

analysis. It is believed that there is a room for improvement of the reliability of the existing indexing 

procedures. This is particularly important in the cases of low symmetry materials, and poor quality 

patterns. It is proposed to formalize the indexing problem and search for its optimal solution. As a 

possible approach, we suggest application of various forms of the generalized Hough transform. Some 

of them turn out to be already applied in existing systems but those of lowest order have not been 

tested yet.  

One may speculate about future developments in automatic indexing. Within the framework 

described above, besides the verification of the applicability of the low order schemes, some other 

steps can be envisioned. E.g., the current path form a pattern to an orientation consists of the line or 

band detection and indexing. Since both steps are based on accumulation, one may consider skipping 

the intermediate stage of line detection and making the accumulation directly in the orientation space.  

Moreover, applying template matching, analogous to that of Rauch [7], to indexing of K-line 

patterns seems to be feasible but there are a number of concerns, which must be taken into account. 

First, K-line patterns are much more complex than spot patterns and their signal-to-noise ratio is much 

lower. Moreover, variability of K-line patterns with orientation is much stronger than that of spot 

patterns. On the other hand, the template matching may be appealing because the approach is 

conceptually very simple.  

There is also an issue of indexing K-line diffraction patterns, in which only one of the lines of the 

pair can be detected and the other one is out of view. This is usually the case for Kossel and CBED 

patterns, and may occur for Kikuchi patterns if they are collected with large camera lengths. There is 

no problem with indexing Kossel patterns because the curvature of conics allows for the determination 

of parameters of the diffracting plane. However, the case of Kikuchi or CBED patterns is complex. We 

are not aware of any automatic method of indexing directly such patterns from single lines. 
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Captions 

 

Figure 1. Illustration of main stages of K-line patter analysis. The corrected Kikuchi pattern (courtesy 

of  E.Bouzy, Univ. de Metz) shown in (a) is subject to line detection (b). The detected lines are a basis 

for indexing (c). 

 

Figure 2. Schematic illustration of Kossel cones and the geometry of K-line diffraction patterns. 
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