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A method that improves the accuracy of misorientations determined from

Kikuchi patterns is described. It is based on the fact that some parameters of a

misorientation calculated from two orientations are more accurate than other

parameters. A procedure which eliminates inaccurate elements is devised. It

requires at least two foil inclinations. The quality of the approach relies on the

possibility to set large sample-to-detector distances and the availability of good

spatial resolution of transmission electron microscopy. Achievable accuracy is

one order of magnitude better than the accuracy of the standard procedure.

1. Introduction
Analysis of orientations plays an important role in the inves-

tigation of polycrystalline materials. Frequently, not orienta-

tions per se but relative orientations (misorientations)

between crystal structures at different points of the sample are

of interest. Misorientations are essential for research on grain

boundaries, interphase orientation relationships and for

characterization of microstructures via lattice curvature (e.g.

Sun et al., 2000). In many cases, especially when low-angle

misorientations are considered, there are high expectations

concerning accuracy of the data. Actually, what matters is the

combination of accuracy and spatial resolution. Since tradi-

tional X-ray-based techniques have relatively low resolution,

misorientations are usually determined using electron micro-

scopy. Attempts have been made to investigate problems

requiring high misorientation accuracy using scanning elec-

tron microscopy (SEM) with electron backscattering diffrac-

tion (EBSD) systems (Wilkinson, 2001). However, the

capabilities of that approach are limited by the small sample-

to-detector distance. Therefore, commercial SEM/EBSD

systems with a level of random errors at about 0.5±1.0�

(Krieger Lassen, 1995) are too crude to investigate subtle

orientation differences. Considerably higher precision in

misorientation determination is achievable using transmission

electron microscopy (TEM). In the case of Kikuchi or

convergent-beam diffraction patterns, the maximal error is

about 0.1±0.2� (Gemperle & GemperlovaÂ , 1995).

It is important to note here that the accuracy of the

microscopic measurements of absolute orientations depends

on a number of external factors (precision in cutting out the

sample, quality of the sample holder, alignment of the sample

in the holder). They are collectively referred to as `sample

positioning factors'. For the accuracy of a misorientation

calculated from two orientations, the issue of sample posi-

tioning is immaterial if orientations are obtained under exactly

the same conditions. In that case, the accuracy is limited by

random errors caused by imperfect resolution of diffraction

patterns.

There is a relatively extensive literature on misorientation

determination using TEM (see e.g. Chen & King, 1987, and

references therein). The procedure proposed here is related to

two previously described methods that require more than just

one foil inclination. The ®rst one (Bonnet & Durand, 1975)

uses patterns from the interface area, i.e. two Kikuchi line

systems originating from two neighbouring crystallites must be

visible in one pattern. Positions of zone axes of the two

systems obtained at two foil inclinations are then used for

calculating the misorientation between the crystallites. In the

second method (Goringe et al., 1979), for a number of

different foil inclinations, vectors along beam directions are

determined in each of the two crystallites of interest; the

misorientation is represented by the best orthogonal matrix

relating the two sets of vectors. Generally, the older papers do

not take into account computerized methods of analysis and

indexing of diffraction patterns. Nowadays, a high-quality

pattern can be indexed by a computer-mouse click (Zaefferer,

2000; Morawiec et al., 2002) and the output contains orienta-

tion parameters which are then used for calculating misor-

ientations.

Such a misorientation can be seen as a composition of two

components: a rotation about the axis parallel to the electron

beam and a rotation about an axis perpendicular to the beam.

Roughly, the accuracy of a rotation about an axis perpendi-

cular to the beam is proportional to the effective camera

length L. Moreover, the accuracy also depends on the reso-

lution of the registered pattern �. The maximum precision is of

the order of �/L (radians). Thus, the larger the length L is, the

smaller is the error level. However, the camera length has no

in¯uence on the precision of rotations about the beam direc-

tion. It is determined by �/� (radians), where � is the

dimension of the recorded pattern. With a 1 square inch,

1024� 1024 pixel resolution camera and typical thickness of

Kikuchi lines of, say, 4 pixels, the ratio �/� corresponds to the

angular accuracy of �0.2�, whereas, for the large effective

camera length of 150 cm, the ratio �/L corresponds to �0.004�.

These numbers show that in realistic conditions the precision
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in misorientation determination is limited by the accuracy of

the rotation about the axis parallel to the electron beam.

The above issue is illustrated in Fig. 1. The same diffraction

pattern was used 20 times for orientation determination. The

distribution of the 20 orientations with respect to the average

orientation is shown. The points represent components of the

rotation vector (i.e. the unit vector in the direction of the

rotation axis scaled by the rotation angle). The scatter of the

points represents the level of random errors. Clearly, rotations

about the z direction, which was chosen to be parallel to the

beam, are more affected by the errors than the rotations about

other axes.

2. The method

It is possible to reduce the large random errors in rotations

about the beam direction and, consequently, achieve a better

overall accuracy by using a relatively simple method. Brie¯y,

the method requires at least two orientation measurements at

each point. The orientations must be obtained for different

foil inclinations. Because of the tilts, the large error associated

with the rotation about the beam direction in¯uences different

`components' of the orientation. The unaffected (i.e. accurate)

components are used for determining the misorientation. The

tilt, which is associated with the sample positioning, is elimi-

nated from the misorientation calculation.

Explicitly, the following steps need to be taken to obtain a

misorientation between two (centrosymmetric) crystallites A

and B: (i) for a given foil inclination, determine the orientation

(special orthogonal) matrices O1
A and O1

B for A and B,

respectively; (ii) change the sample tilt; (iii) for the new

sample position, determine the orientation matrices O2
A and

O2
B for the ®rst crystallite and the second crystallite, respec-

tively.

Based on the four orientations, the procedure allows high-

accuracy misorientation parameters to be calculated. For even

better precision, one may use more sample positions. In

general, if the upper index enumerates the tilts, one has Oi
A

and Oi
B for the ith tilt, with i = 1, 2, . . . , N. In all cases, the

setting of the camera length should be as large as possible.

Let us concentrate on the case with a given tilt i. For the ®rst

of two measurements, we can write

TAPEA � Oi
A; �1�

where EA and TA are the errors associated with the rotation

about the beam direction and the true orientation, respec-

tively. P represents the unknown rotation corresponding to

the sample positioning (including tilt). Analogously, for the

second measurement, one can write TBPEB = Oi
B. Hence, the

true misorientation represented by the matrix M = TAT
T
B is

given by

M � Oi
A�Ei�T�Oi

B�T; �2�
where Ei = ET

BEA is the combined error rotation about the

beam direction. The accuracy of the misorientation obtained

directly from Oi
A�Oi

B�T is low because of the actual presence of

the unknown factor Ei. Let kX ÿ Yk be a `distance' in the

rotation space. The true misorientation M can be approxi-

mated by

argX min
X;Ei

PN
i�1

kX ÿOi
A�Ei�T�Oi

B�Tk2; �3�

subject to the conditions that X and Ei are special orthogonal,

plus a condition speci®c to the experiment; in our case, the

speci®c condition is that Ei represent rotations about the beam

direction. With the norm k � k speci®ed,1 the problem (3) can

be solved numerically.

There is an additional aspect which must be taken into

account. Due to crystal symmetry, physically identical orien-

tations or misorientations can be described by different

orientation parameters. In other words, a given (mis)orienta-

tion can be determined by different but symmetrically

equivalent parameters. The described method of misorienta-

tion determination will work only if the orientation para-

meters are chosen in a consistent way. The procedure is

straightforward. Based on the tilt 1, the true misorientation is

close to M1 :� O1
A�O1

B�T. If Oi
A represents the ®rst orientation

measured for the tilt i 6� 1, then the second one Oi
B cannot be

randomly selected; from the set of symmetrically equivalent

matrices, the one closest to �M1�TOi
A must be taken.

3. Quaternion-based procedure

The idea of the method was presented above using orthogonal

matrices because that formalism is well known. However, the

calculations become more simple if the rotations are repre-

sented by unit quaternions and the distance inherited from the

quaternion vector space is used. By the distance between

quaternions x and y, we mean kxÿ yk, where kxk =ÿP3
��0 x�x�

�1=2
and x�, (� = 0, 1, 2, 3) is the �th component of x.

Further on, xy will denote the quaternion product of x and y

Figure 1
Deviations from the average orientation for 20 orientations determined
conventionally from one diffraction pattern with L = 604 mm. The
directions x and y, and the beam direction z are mutually perpendicular.
Here and in Figs. 2±4, all values are given in degrees.

1 It can be the Frobenius norm in the linear space of matrices.
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and the quaternion conjugate to x will be denoted by x*. One

has to remember that the correspondence between unit

quaternions and rotations is two-to-one; of two equivalent unit

quaternions, the one closer to the identity quaternion will be

used.2 [For more on quaternions, see e.g. the work of Altmann

(1986); a very brief account was also given by Morawiec &

Pospiech (1989).]

Let the quaternions qiA, qiB and ei correspond to Oi
A, Oi

B and

Ei, respectively. In analogy to equation (3), the true misor-

ientation is approximated by the quaternion

argx min
q;ei

PN
i�1

kxÿ qiAe
i�qiB

�k2 �4�

under the conditions that q and ei are unit quaternions and

that ei correspond to rotations about the beam direction.

Direct calculation shows that kxÿ qiAe
i�qiB

�k2 =

2
�
1 ÿP

� x��qiBeiqiA���
�
. The �th component �qiBeiqiA��� of the

quaternion qiBe
iqiA

�
is linear with respect to the components of

ei. Thus, the expression

�qiBeiqiA��� �
P
�

Qi
��e

i
� �5�

de®nes N matrices Qi. The explicit formula for Qi is given in

Appendix A. Now, with � and �i denoting Lagrange multi-

pliers, the function (of x and ei)

P
i

2
�

1ÿP
�;�

x�Q
i
��e

i
�

�
��

�P
�

x�x�ÿ1
�
�P

i

�i
�P

�

ei�e
i
�ÿ1

�

�6�
is stationary if

P
�

Qi
��x� � �iei� and

P
i;�

Qi
��e

i
� � �x�: �7�

Substitution of x� in the ®rst of these equations by the second

one leads to

�
P
j;�

Rij
��e

j
� � �iei�; �8�

where Rij
�� =

P
� Q

i
��Q

j
��. Brief calculation shows that Rij

�� =

Rji
�� and Rii

�� = ���.
With ei representing rotations about the beam (or z)

direction, only the entries with � = 0, 3 are non-zero. After

omitting rows and columns consisting of zeros, Rij become 2 �
2 matrices and our main equation (8) can be written as

�

I2 R12 R13 . . . R1N

R21 I2 R23 . . . R2N

R31 R32 I2 . . . R3N

..

. ..
. ..

. . .
. ..

.

RN1 RN2 RN3 . . . I2

2
666664

3
777775

e1

e2

e3

..

.

eN

2
66664

3
77775
�

�1e1

�2e2

�3e3

..

.

�NeN

2
66664

3
77775
; �9�

where I2 is the 2 � 2 identity matrix and the ei vectors have

two components.

In particular, for the most interesting case of two foil

inclinations (N = 2), the problem is reduced to two two-

dimensional eigenvalue problems

�2�R12R21�e1 � �1�2e1; �2�R21R12�e2 � �1�2e2: �10�
Since the matrices R12R21 and R21R12 are symmetric, there are

real solutions to the problems. Because ei correspond to small

angle rotations, the problems are solved by the eigenvectors

close to (1, 0)T. With known ei, the quaternion x minimizing

(6) and representing the sought misorientation is calculated

from the second of equations (7) and kxk = 1.

The results of application of the proposed procedure are

illustrated in Fig. 2. The orientation data were collected from

diffraction patterns recorded with tilts of ÿ20 and 20�. In

analogy to Fig. 1, misorientations with respect to the average

orientation are given in the form of the rotation vector. The

scatter of the points and the level of random errors along the

beam direction are one order of magnitude smaller than those

shown in Fig. 1.

4. Sensitivity assessment

The sensitivity of the method to experimental errors and its

dependence on the tilt angle were estimated numerically. All

tests were performed for cubic (Oh) crystal symmetry. Since

there are a number of parameters involved, it is dif®cult to
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Figure 2
Misorientations with respect to the average orientation determined by
the proposed accurate procedure. The parameters of the diffraction
patterns used here were the same as in the case of Fig. 1.

Figure 3
Maximal (squares) and average (circles) differences between the
calculated and the true misorientations versus `noise'. The line without
markers represents the numerically estimated maximal error of
misorientations determined in the conventional way.

2 The cases with the two equivalent unit quaternions at the same distance to
the identity are of no practical importance and will not be discussed here.
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estimate the gain in accuracy globally. Sections through the

parameter space give an idea of the overall behavior of the

method. Fig. 3 shows the variations in the maximal and

average deviations between the calculated misorientations

and the true ones with inaccuracies in the rotations about axes

perpendicular to the beam (`noise'). In practice, the inac-

curacies are of the order of �/L. To obtain the ®gure, realistic

conditions were simulated by adding relatively large errors for

the rotation about the beam direction and small-angle rota-

tions for other axes. More precisely, in one step the following

procedure was applied. First, two random orientations were

generated, and two tilts of 20 and ÿ20� were applied to each of

them, creating a total of four orientations. Then, the orienta-

tions were modi®ed by random errors; they were composed of

four random rotations about axes perpendicular to the beam

with angles not exceeding a value on the abscissa. Then,

rotations about the beam direction with a random rotation

angle not exceeding 0.1� were applied. These arti®cially biased

data were the basis for calculating misorientations via equa-

tion (10). In Fig. 3, the ordinate represents the deviations

between the `exact' misorientations obtained from the error-

free initial orientations and the misorientations calculated

from (10). For each curve in Fig. 3, as well as those in Figs. 4

and 5, 107 steps were used. In the range we are interested in,

the maximal and average errors are simply proportional to the

noise.

It is interesting to take a look at the dependence of the

difference between the exact and calculated misorientations

on the magnitude of the tilt. Obviously the described proce-

Figure 4
Maximal (squares) and average (circles) errors versus tilt angle. The line
without markers represents the maximal error for misorientations
determined in the conventional way.

Figure 5
Maximal (squares) and average (discs) errors versus the number of foil
inclinations. Values on the ordinate are given in degrees.

Figure 6
TEM diffraction patterns obtained with a convergent electron beam. This
is one of the sets used in the tests of Figs. 1 and 2. The effective camera
lengths are 225 mm and 604 mm. The ®rst pattern is used only for
indexing. Orientation parameters are determined from the second
pattern.
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dure breaks down if the tilt is small. The maximal and average

differences (between the recalculated and the true misor-

ientations) versus the tilt angle are shown in Fig. 4. The tilt

angles were plus and minus the value on the abscissa, i.e. the

total difference in the foil inclination is two times that value.

As before, random errors were added to generated random

orientations. The angles of error rotations about axes

perpendicular to the beam did not exceed 0.01�. The rotations

about the beam direction were not larger than 0.1�. The ®gure

shows that a gain in accuracy is possible only for tilts larger

than a certain cut-off value.

Figs. 3 and 4 were obtained for N = 2. Slightly better

accuracy can be achieved by using a larger number of foil

inclinations. This is illustrated in Fig. 5, showing the average

and maximal error versus N. The axes of the tilt rotations were

symmetrically distributed in the plane perpendicular to the

beam direction. In all cases, the magnitude of the inclination

was 20�. The levels of random errors added to the generated

orientations were the same as in the case of Fig. 4. To obtain

the presented data, equation (9) was solved with respect to ei

using an iteration method. Initially, the vectors ei were set at

(1, 0)T. At each step, the current set of ei vectors was put into

the left side of (9) and then the calculation of the right side,

plus normalization, provided a new set of vectors. The itera-

tion was stopped when the magnitude of the deviation

between the current and the new ei vectors became smaller

than 10ÿ12 for all i.

5. Final remarks

The described approach requires large camera lengths. This

means that the solid angle covered by the pattern detector

becomes small. For a very high precision in misorientation

determination, the angle is too small for pattern indexing. The

problem can be easily overcome by collecting a couple of

patterns for gradually increasing camera lengths (Fig. 6). The

patterns corresponding to the small values of the camera

length are used for reliable indexing. Once the indexing and a

rough orientation are known, the patterns obtained with the

large camera length are used for ®ne tuning the orientation

parameters.

The proposed method is based on the assumption that the

diffraction patterns are collected from two points with unique

orientations. In reality, because of ®nite thickness of the foil

and ®nite probe size, the patterns originate from certain

volumes in which the orientation ®eld may vary. With the new

high-precision procedure, the volumes are additionally

increased by the necessity of inclining the foil. In some cases,

this loss in spatial resolution may outweigh the gain in accu-

racy. Therefore, one should not expect the new method to be

universal. It is applicable only to materials in which the

volumes affecting the patterns are characterized by unique

orientations.

Results of the proposed procedure can be corrupted by

shifts of the pattern centre (the geometrical point of the

intersection of the detector plane with the line perpendicular

to the plane through the sample point from which the

diffraction originates). The centre is allowed to be at different

locations for the points A and B, but it must be ®xed for all

patterns corresponding to each of these points. Otherwise,

corrections will be needed.

Quaternions constitute a convenient parameterization for

the proposed method. Application of other parameterizations

of the orientation space may be considered but one has to be

careful about singularities. For example, it does not make

sense to analyse rotation axes for small-angle rotations

because the axis/angle parameterization is singular at the

point of zero rotation angle (Prior, 1999; Wilkinson, 2001).

The described method takes advantage of the high accuracy

of some orientation components. The principle used here is

applicable in other experimental situations, in which the

presence of inaccurate components negatively in¯uences the

overall precision of the misorientation determination.

APPENDIX A
Explicit formula for Qi

The entries of the matrix Qi are calculated by expanding the

left side of the relation �qiBeiqiA��� =
P

� Q
i
��e

i
�. Simple

calculation shows that the coef®cients of ei� are

Qi
00 �

P
�

�qiA���qiB��;

Qi
0m � �qiA�m�qiB�0 ÿ �qiA�0�qiB�m �P

k;l

"mkl�qiA�k�qiB�l;

Qi
m0 � �qiA�0�qiB�m ÿ �qiA�m�qiB�0 �

P
k;l

"mkl�qiA�k�qiB�l;

Qi
mn � �mn

h
�qiA�0�qiB�0 ÿ

P
k

�qiA�k�qiB�k
i
� �qiA�m�qiB�n

� �qiA�n�qiB�m ÿP
k

"mnk��qiA�0�qiB�k � �qiA�k�qiB�0�:
�11�
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