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Fabrication oF aluminum matrix composite reinForced  
with al0.5cocrcuFeni high-entropy alloy particles

The aluminum composite with dispersed high entropy alloy were developed by stir casting involving the powder-in-tube 
method. First, al0.5CoCrCuFeni high entropy alloy (Hea) powder was made by mechanical alloying, and the powder was extruded 
in a tube-type aluminum container to form Hea precursor. The extruded Hea precursor was then dispersed in the aluminum matrix 
via stir casting. as a result, Fe-Cr-ni based high-entropy phases was uniformly formed in the aluminum matrix, revealing ~158, 
166, 235% enhancement of tensile strength by incorporating 1, 3, and 5 wt% Hea particles, respectively. 

Keywords: aluminum matrix composite; high entropy alloys; reinforcement; powder-in-tube; stir casting 

1. introduction

aluminum alloys exhibit excellent specific strength, work-
ability, thermal conductivity, and recyclability. Hence, they are 
now used not only in high-tech industries, such as automotive 
and aerospace but also in our daily life [1-3]. However, precipi-
tates and second phases in aluminum alloys can easily form at 
warm and high temperatures, significantly degrading their per-
formance and limiting their range of use [4,5]. Therefore, many 
researchers have suggested that aluminum matrix composites 
have better thermal stability than aluminum alloys. However, 
poor wettability between the aluminum matrix and ceramic or 
carbon reinforcement has been considered as a technical bot-
tleneck in this field [6-8]. 

High-entropy alloys (Heas) that are multicomponent alloys 
have outstanding mechanical properties and thermal/electrical 
stabilities comparable to those of ceramic materials though they 
are crystalline metals because of their metallic bonds [9-11]. 
These properties are derived from the high entropy and slug-
gish diffusion rate of Heas because of the lattice distortion 
effect caused by random mixing of elements and cocktail effects 
[12]. its intrinsically low reactivity, slow diffusion rate, high 
strength, hardness, and good wetting ability with the metallic 
matrix makes it an excellent choice for use as a reinforcement 
in al matrix composites. 

Several studies have been conducted to produce metal 
matrix composites containing Hea phases, with a majority 
employing powder metallurgical routes. Chen et al. [13] used 
vacuum hot pressing to prepare alConiCrFe particle-reinforced 
copper matrix composites. it has been reported that there is no 
obvious reaction between the copper matrix and Hea-reinforced 
particles. Praveen et al. [14] used stir casting to add a cast-
manufactured al-20Cu-10Mg high-entropy alloy to a 2024 
aluminum alloy matrix, which improved mechanical properties 
such as yield strength, tensile strength, and young’s modulus. 
according to this research, when 15% Heas were added to 
2024 aluminum alloy, yield strength was improved 1.95 times 
and tensile strength about 1.7 times. However, the Heas used in 
this study differed in composition from commonly used Heas; 
this type of Hea was used to solve the separation phenomenon 
caused by the difference in surface energy between the molten 
aluminum and commonly used Hea particles.

as discussed earlier, most research [13-19] on dispersing 
Hea particles in a metal matrix is conducted using the powder 
metallurgical method because the difference in surface energy be-
tween the molten metal and the Hea particles makes it is difficult 
to disperse Heas in a metal matrix using the casting method. in 
this study, the feasibility of using the casting method by adding 
Heas in the form of a powder in tube (PiT) to uniformly disperse 
Hea particles in the aluminum matrix was evaluated. among 
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the many compositions of Hea, al0.5CoCrCuFeni alloy was 
applied to the experiment. al0.5CoCrCuFeni alloy has a mixing 
enthalpy (∆Hmix) of –5 kJ/mol or less to minimize decomposition 
in molten aluminum during stir casting and partial decomposition 
of al0.5CoCrCuFeni alloy can form a reinforcement phase such as 
al70Co15ni15, al7Cr, al2Cu, al3Fe. al0.5CoCrCuFeni alloy was 
added in the form of a PiT, and high shear stress was applied to 
uniformly disperse the Heas in the aluminum matrix. The micro-
structures of the powders and aluminum matrix composites were 
evaluated, and tensile tests were conducted to evaluate whether 
Heas could act as reinforcements in the aluminum matrix.

2. experimental procedure

2.1. high entropy alloys

First, al, Co, Cu, Fe (<45 µm, 99.9%, rnD Korea), Cr 
(<45 µm, 99.99%, rnD Korea), and ni (<45 µm, 99.95%, rnD 
Korea) powders were prepared to fabricate high-entropy powders 
as starting materials. The al0.5CoCrCu0.5Feni Hea powder was 
synthesized by high-energy ball milling using an attrition mill. 
High-energy ball milling was conducted up to 500 rpm for 72 h 
in argon atmosphere using stainless steel balls (5 mm) and vials, 
and the ball-to-powder ratio was 10:1. 

2.2. powder in tube (pit)

Fig. 1 shows the schematic images of the overall experi-
mental process. gravity casting was used to fabricate 2-inch pure 
aluminum billets, and the manufactured Heas were weighed 
and filled in the core of the hole drilled 2-inch billet. Following 
that, an extruder with 200 tons of hydraulic force or pressure 
was used to extrude the 2-inch billet into a ϕ20 rod.

2.3. high shear stress stir casting

aluminum pellets (<1 cm3, 99.99%, rnD Korea) were 
charged into a chamotte jar and dissolved in high-frequency 
induction, and PiT was obtained in the molten aluminum. it was 
held at 700°C and stirred at 300 rpm/30 min before casting. 

2.4. analysis

X-ray diffraction (XrD, rigaku, miniFlex600) with Cu Kα 
radiation (0.1542 nm) generated at 40 kv was used to perform 
a phase analysis. additionally, X-ray diffraction was used to 
confirm the formation of the high-entropy powder. The micro-

Fig. 1. Schematic image of overall experimental process

Fig. 2. X-ray diffraction patterns of al0.5CoCrCuFeni alloys with 
mechanical alloying time

structures of the powder and cast alloy were observed using 
a field emission scanning electron microscope (Fe-SeM, Fei, 
verios g4 uC). Furthermore, we performed quantitative analysis 
using energy dispersive spectroscopy (eDS, eDaX, octane elect 
eDS System) to determine the distribution of each atom. The 
cast materials were processed into tensile test specimens (aSTM 
e8) to evaluate their mechanical properties (MTS810, MTSC). 

3. results and discussion

High-energy ball milling was used to mechanically alloy 
pure al, Co, Cr, Cu, Fe, and ni as starting materials. Fig. 2 
shows that the XrD patterns varied according to the duration of 
mechanical alloying. Solid solution FCC and bCC phases were 
observed in the patterns obtained from the ball-milled powders, 
which is typical for al-containing CoCrCuFeni alloys [12]. 
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as the ball-milling time increased, there was a decrease in peak 
intensity, and some peaks became invisible owing to severe lat-
tice distortion [10]. after ball milling for 48 h, peak broadening 
and only bCC and FCC peaks were observed. So, the optimal 
milling time is considered to be 48 hours.

Fig. 3 shows the results of the microstructure analysis of 
the Hea particles synthesized using SeM-eDS. The synthesized 
Hea particles through ball milling for 48 h was confirmed to 
have a fine size of approximately 5 µm or less through micro-
structure analysis; as a result of eDS analysis, it was confirmed 
that the elements were uniformly dispersed. based on the data 
in Figs. 2 and 3, after ball milling for 48 h, we confirmed that 
multiphase Heas were well synthesized. 

in general, when reinforcement particles are added to 
molten metal, they float on the surface of the molten metal owing 
to the difference in surface energy and density [7]. in this study, 
to minimize this problem, physical contact was induced between 
the Hea particles and aluminum through extrusion during the 
manufacturing process of PiT. Hea particles were added in the 
form of PiT to molten aluminum, and the reinforcement was 
uniformly dispersed in the aluminum matrix through high shear 
stress stirring. a composite of al-1, 3, and 5 wt.% Hea was 
synthesized using the high shear stress stir casting method. ad-
ditionally, to confirm the effect of the PiT method, non-PiT Hea 

particles were added to the molten aluminum, and the mechanical 
properties were compared. Fig. 4 shows the microstructure of the 
al-5 wt.% Hea composite analyzed by SeM-eDS. SeM images 
show uniformly dispersed Hea particles in the aluminum matrix 
without the decomposition of Heas. additionally, intermetallic 
compounds between the Hea elements and aluminum were not 
identified. However, it was confirmed that Co-rich and Cr-rich 
regions appeared, and it is expected that analysis of the behavior 
of Co and Cr in al–Hea composites through long-term heat 
treatment will be necessary in the future. 

The yield strength, tensile strength, and elongation of the 
samples are listed in Table 1. The results in Table 1 show 
the average values after five experiments for each sample. To 
evaluate the effect of the PiT method, al-1 wt.% Hea composites 
were prepared in two ways based on the Hea addition method. 
The tensile strengths of the pure aluminum and al-1 wt.% Hea 
(non-PiT) were 50.96 and 60.93 MPa, respectively. From these 
results, it was confirmed that the addition of Hea in aluminum 
improved the mechanical properties of pure aluminum, and Hea 
powder is considered sufficiently applicable as a reinforcement in 
aluminum matrix composites. Moreover, when Heas were added 
in the form of PiT, the tensile strength was 80.62 MPa, confirm-
ing that the addition effect of the PiT method was greater than 
that of the conventional addition method. as the amount of Hea 

Fig. 3. Microstructures of synthesized Heas particles through ball milling for 48h and quantitative analysis via SeM-eDS

Fig. 4. Microstructures of al-5 wt.% Hea composite and quantitative analysis via SeM-eDS
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particles added increased, the yield, tensile strength increased 
and elongation decreased owing to the tradeoff between strength 
and elongation. in the case of al-5 wt.% Hea composite, it was 
confirmed that the yield strength and tensile strength were more 
than doubled compared to pure aluminum. The improvement 
of mechanical properties is considered that grain refinement of 
aluminum matrix was presented by the pinning effect through 
the added Heas particles. Through this study, it was confirmed 
that Hea particles can sufficiently act as reinforcing materials 
in aluminum composites, and it is expected that Hea particles 
can be applied to high-strength aluminum alloys. 

Table 1
Mechanical properties of pure aluminum and al-1, 3, 5 wt.% Heas 

composite

sample pit
yield 

strength
(mpa)

tensile 
strength 
(mpa)

elongation
(%)

pure aluminum — 29.9 50.96 36.35
al-1 wt.% hea X 38.71 60.93 30.97
al-1 wt.% hea o 44.84 80.62 24.85
al-3 wt.% hea o 49.92 84.62 20.26
al-5 wt.% hea o 67.27 119.77 19.35

4. conclusion

a high-entropy alloy of al0.5CoCrCuFeni was prepared us-
ing a mechanical alloying method and dispersed in an aluminum 
matrix to evaluate the feasibility of using Heas as reinforce-
ments in the aluminum matrix. Mechanical alloying reduced the 
intensity of the XrD peaks during the high-energy milling of al, 
Co, Cr, Cu, Fe, and ni powder for up to 48 h, and peak broad-
ening occurred owing to decreased crystalline size and lattice 
distortion effect. after ball milling for 48 h, we confirmed that 
multiple elements were uniformly mixed and that they formed 
only the FCC and bCC phases. To effectively add Hea particles 
during the casting process, it was applied in the form of a PiT. 
There was a difference in mechanical properties depending on 
whether the PiT method was applied; when the PiT method 
was applied, it was confirmed that the mechanical properties 
improved by approximately 30%. The fabricated Hea particles 
were successfully dispersed in the aluminum matrix by the high 
shear stress stir casting method, and it was confirmed that the 
Hea particles were uniformly dispersed in the aluminum matrix 
without decomposition or formation of intermetallic compounds. 
in the case of al-5 wt.% Hea composite, it was confirmed that 
the yield strength and tensile strength were more than doubled 
compared to pure aluminum. 
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Supplementary Fig. 1. Stress-strain curves of al-Hea composite
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