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The MelTing and The debye TeMperaTure of for bCC and fCC MeTals under pressure:  
a CalCulaTion froM The sTaTisTiCal MoMenT MeThod

We build the melting theory and the theory of the Debye temperature for defective and perfect cubic metals mainly based on 
the statistical moment method. our theoretical results are applied to metals Ni, Pd and Pt. our calculations of melting temperatures 
agree well with experiments and other calculations. our other calculations are highly reliable. 
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1. introduction

Studying on the melting of the crystal is a classic problem. 
experimental techniques consist of the laser-heating diamond 
anvil cell (LH Dac) [1] and the shock wave (SW) [2]. Main 
theories and simulations are the molecular dynamics simula-
tion (MD) [3] and the ab initio calculations [4]. However, the 
experiments do not agree with theoretical results for the melt-
ing of some transition metals [5]. at the melting point, many 
physical quantities such as the atomic volume, the density, the 
enthalpy, the entropy, etc. have jumps. although some theoreti-
cal researchers tried to solve this problem [6,7], the obtained 
results are still limited. 

Researchers have been interested the melting of metals 
Ni, Pd and Pt. at 0.1 MPa, The Bcc structure of Ni has the lat-
tice constant a = 3.5328×10–10 m and the melting temperature 
1728 K at 0,1 MPa. The experimental melting curve of Ni has 
the constant dT/dP = 33 K/gPa up to 1923K and 6 gPa [8,9]. 
The melting curve of Ni was experimentally and theoretically 
determined in [10-12]. The behavior of Ni was studied at room 
temperature by calculation up to 34 TPa[13]. according to X-ray 
diffraction study, the Fcc structure of Ni is stable at 298K up to 

65 gPa [14] and up to 55 gPa for nanocrystalline Ni [15]. The 
Bcc structure of Pd has the lattice constant a = 3.8902×10–10 m 
and the melting temperature 1827K at 0.1 MPa. The behavior 
of Pd was studied by X-ray diffraction up to 80 gPa and 298 K 
[16,17], by calculation [18] and in [19,20]. The Fcc structure 
of Pt has the lattice constant a = 3.9239×10–10 m and the melting 
temparature 2057 K at 0.1 MPa. The behavior of Pt was studied 
at melting by calculations [12,21-23]. The melting curve has an 
initial dT/dP = 42 K/gPa up to 6 gPa and ~2300 K [24]. The 
melting curve was presented by the equation T (K) = 2057 + 
27.2P – 0.1497P2, where P is in gPa [25].

in recent years, many simulations and theoretical studies on 
the influences of factors such as temperature, pressure, atomic 
number, impurities,... on structural, mechanical; thermodynamic, 
melting and electrical properties, phase transtions of metals, al-
loys and polymers have been published [26-37].

in this paper, we present the melting theory and the theory 
of Debye temperature for cubic metals mainly builded by the 
statistical moment method (SMM). our theory is applied to 
metals Ni, Pd and Pt. We compare and interpret the numerical 
results obtained. 
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2. Theoretical model

The Helmholtz free energy of cubic metals is equal to 
[38,39] 
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where 0 0 0,
2
NU u u   is the cohesive energy of an atom, N is the 

total atomic number of the metal, θ = kBoT, kBo is the Boltzmann 

constant, T is the absolute temparature, ,
2
h h


   is the Planck 

constant, ω is the vibration frequency of atom at lattice point 
node, k, γ1, γ2 are parameters of the metal [38,39]. 

The cohesive energy u0 the parameters k, γ1, γ2 and γ for 
cubic metals in the approximation of two coordination spheres 
have the forms as in [38,39] 

The state equations for cubic metals are determined by 
[38,39,47]
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where 
3
12

2
rVv

N
    is the volume of cubic unit cell per atom 

for face-centered cubic (Fcc) lattice and 
3
14

3 3
r

v    is that for 

body-centered cubic (Bcc) lattice. if knowing the interaction 
potential between two atoms, we can find the solution of eq. (2). 
This is the nearest neighbor distance between two atoms r01(P,0) 
at pressure P and temperature 0K. From that, we can determine 
the displacement of atom from the equilibrium position y(P,T) 
and the nearest neighbor distance between two atoms r1(P,T) 
at pressure P and temperature T [38,39]

      1 01, ,0 ,r P T r P y P T    (3)

The absolute stability limiting temperature for crystalline 
state Ts is determined by [38-45] 

 
 

1 0

118 ,
s

s
s

B G s vT T

r u TT P
k P T r P 

          
  (4)

where r1s = r1(P,Ts) and 1
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  is the gruneisen pa-

rameter of the metal. The melting temperature Tm of the metal 
is determined by [38-45] 
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where r1m = r1(P,Tm). am = a(P, Tm).
The equilibrium vacancy concentration is given by 

[43,45,46]

 0exp
4v
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Then, the melting temperature of defective metal is equal 
to [43,45,46]
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The jump of volume at melting point of the metal is deter-
mined by [48] 
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where ε is the metal constant and normally ε = 0.01 [48] and 
〈u〉 = y.

We determine the slope mT
P




  from the melting curve Tm (P) 

of of defective metal calculated from eq. (7). after that, we use 
the clapeyron-clausius equation to find the jump of enthalpy 
and entropy at melting point 
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The isothermal compressibility, the thermal expansion 
coefficient and the heat capacity at constant volume and the 
gruneisen parameter of cubic metals have the forms [38,39]
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Therefore, from r1(P,T ) we can find V(P,T ), χT (P,T ), 
αT (P,T ), CV (P,T ), và γG (P,T ). The gruneisen parameter 
γG (P,T ) has the form [49]
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where q is the material constant and q > 0. The gruneisen pa-
rameter is also defined by [38,39,47] 
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where Bo D
D

k T
 


  is the Debye frequency. The Debye tempera-

ture TD is equal to [47,50] 
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3. numerical results and discussions 

For metals Ni. Pd and Pt, we use the Mie-Lennard-Jones 
(MLJ) n-m potential 

 0 0( )
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  (18)

where r0 is the distance between two atoms corresponding to 
minimum energy potential taking the value of –D, m, n are 
different numbers for different metals and are determined by 
empirical way on the basis of experimental data. The MLJ 
potential’s parameters D, r0, m, n for Ni. Pd and Pt are given 
in TaBLe 1 [51,52]. our calculated results are summarised in 
tables from TaBLe 2 to TaBLe 5 and illustrated in figures 
from Fig. 1 to Fig. 7. 

TaBLe 1

The MLJ potential’s parameters for Ni, Pd and Pt [51,52]

interaction D/kbo (K) r0 (10–10 m) m n
Ni-Ni [51] 4325.16 2.4780 8.0 9.0
Pd-Pd [52] 7667.06 2.7432 2.89 11.85
Pt-Pt [52] 11366.40 2.7689 2.44 14.17

Fig. 1. Tm(P) for Ni determined by SMM calculations, experimetal data 
[57] and other calculations [53-56]

in Fig. 1, the melting temperature Tm(P) of Ni is calculated 
by SMM according to the model of perfect crystal from eq. (5), 
SMM according to the model of defective crystal from eq. (7), 
MD of Koci et al. (2006) [53] and Luo et al. (2010) [54], ab initio 
of Pozzo và alfe (2013) [55], calculations in quasi-harmonic 
approximation (Qa) and from Lindemann law of Minakov 
and Levashov (2015) [56], experiments from X-ray diffraction 
(XRD) and temperature versus laser power (TvsLP) plateau of 
Lord et al. (2014) [57].

Fig. 2. Tm(P) for of Pd determined by SMM calculations, experimetal 
data [61] and other calculations [58-60]
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in Fig. 2, the melting temperature Tm(P) Pd is calculated 
by SMM according to the model of perfect crystal from eq. (5), 
SMM according to the model of defective crystal from eq. (7), 
MD of Jeong và chang (1999) [58] and Liu et al. (2015) [59], 
ab initio of Liu et al. (2011) [60] and và Dac experiments of 
errandonea (2013) [61].

Fig. 3. Tm(P) for Pt determined by SMM calculations, experimetal data 
[61,64] and other calculations [58,62,63]

in Fig. 3, the melting temperature Tm(P) of Pt is calculated 
by SMM according to the model of perfect crystal from eq. (5), 
SMM according to the model of defective crystal from eq. (7), 
MD of Jeong and chang (1999) [58], ab initio Z method of 
Belonoshko and Rosengren (2012) [62], calculations from 
Lindemann law of Hieu (2014)[63] and Dac experiments of 
Kavner and Jeanloz (1998) [64] and errandonea (2013) [61]. 

our SMM calculations of Tm(P) according to the models 
of perfect and defective crystals are in good agreement with ex-
periments from Dac and other calculations from MD, ab initio, 
Lindemann law and ab initio Z method. The higher the tempera-
ture, the larger the difference of the melting curve between the 
perfect metal and the defective metal. in the range from zero to 
100 gPa, the maximum differences obtained for Pt, Ni and Pd 
are 13.3%, 17.5% and 20.18%, respctively. The maximum er-
rors of the melting temperature between the SMM calculations 
according to the model of defective crystals and experiments 
for Pt, Ni and Pd are below 8.7%, 7.5% and 4.6%, respectively.

our SMM calculations of Tm(P), (∂Tm) /(∂P), ∆vm, ∆Hm 
and ∆Sm for Pt, Ni and Pd are determined from Fig. 1, Fig. 2 and 
Fig. 3 and are summarized in TaBLe 3, TaBLe 4 and TaBLe 5. 
When pressure increases from zero to 60 gPa, Tm increases from 
2253 K to 3903.3 for Pt, from 1787 K to 3096 K for Ni and from 
1925 K to 3548.2 for Pd; (∂Tm) /(∂P) decreases from 31.12 K/gPa 
to 21.54 K/gPa for Pt, from 28 K/gPa to 18.2 K/gPa for Ni 
and from 33.88K/GPa to 17.66 K/GPa for Pd; ∆vm calculated 
from eq. (8) decreases from 1.384×10–30 m3 to 1.158×10–30 m3 
for Pt, from 1.232×10–30 m3 to 0.909×10–30 m3 for Ni and from 

1.383×10–30 m3 to 1.100×10–30 m3 for Pd; ∆Hm calculated from 
eq. (9) increases from 100.2 mev to 209.84 mev for Pt and from 
78.56 meV to 221.01 meV for Pd; ∆Sm calculated from eq. (10) 
changes from 0.0445kB to 0.0537kB for Pt, from 0.044kB to 
0.05kB for Ni and 0.041kB to 0.062kB for Pd. The nearest neigh-
bor distances between two atoms for metals, substitutional and 
interstitial alloys calculated from the SMM are in good agreement 
with experiments and other calculations in many previous papers 
[26-28,38-48]. The melting temperature for Pt, Ni, Pd calculated 
from the SMM also are in good agreement with experiments and 
other calculations in this paper. Therefore, we hope that the jumps 
of physical quantities obtained in this paper are highly reliable.

The nearest neighbor distance, the isothermal compress-
ibility, the thermal expansion coefficient, the heat capacity at 
constant volume, the gruneisen parameter and the Debye tem-
perature of Ni at T = 300K and under pressure are summarized 
in Table 2. These quantities for Pt are illustrated on figures from 
Fig. 4 to Fig. 6. The isothermal compressibility, the thermal ex-
pansion coefficient, the heat capacity at constant volume and the 
gruneisen parameter for metals under temperatures and pressure 
are in good agreement with experiments and other calculations 
(for example see [39]). Therefore, the Debye temperature of 
metals calculated from these quantities also are highly reliable. 

TaBLe 2

r1 (10–10 m), χT (10–12 Pa–1), αT (10–5 K–1), CV (J/mol·K), γG  
and TD (K) for Ni at T = 300K and under pressure

T (K) P 
(gpa) r1 χT αT CV γG TD

300 K

0 2.4661 7.0872 2.228 23.086 2.6092 399.20
20 2.3983 3.8383 1.181 21.914 2.4745 493.68
40 2.3564 2.7005 0.814 20.963 2.4035 561.88
60 2.3257 2.1046 0.621 20.131 2.3569 617.58
80 2.3012 1.7334 0.501 19.379 2.3228 665.64

1000 K

0 2.4910 9.0739 2.670 25.189 2.3066 364.13
20 2.4131 4.3722 1.411 24.881 2.3281 454.16
40 2.3674 2.9611 0.995 24.719 2.3037 517.84
60 2.3345 2.2628 0.781 24.595 2.2802 569.11
80 2.3087 1.8412 0.648 24.489 2.2601 612.92

according to Fig. 4a, 4b, 5a, 5b, 6a and 6b for Pt at the 
same temperature, quantities such as the nearest neighbor dis-
tance, the isothermal compressibility, the thermal expansion 
coefficient, the heat capacity at constant volume decrease and 
the Debye temperature increases with the increase of pressure. 
The decrease of the thermal expansion coefficient at higher 
temparatures is smaller than that at lower temparatures. For Pt at 
the lower temperatures (300K, 500K) when pressure increases, 
the gruneisen parameter not significantly decreases. For Pt at 
the higher temperatures (from 1000K to 2000K) when pressure 
increases, the gruneisen parameter nonlinearly increases. The 
increase of the Debye temperature is nonlinear.

For Pt at the same pressure, quantities such as the nearest 
neighbor distance, the isothermal compressibility, the thermal 
expansion coefficient, the heat capacity at constant volume in-
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Fig. 4. (a) r1(P,T ) and (b) χT (P,T ) (b) for Pt

Fig. 5. (a) αT (P,T ) and CV (P,T ) (b) for Pt

Fig. 6. (a) γG(P,T ) and (b) TD(P,T ) for Pt
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crease, the the gruneisen parameter and the Debye temperature 
decrease with the increase of pressure.

according to tables from TaBLe 3 to TaBLe 5 and Fig. 7, 
the jump of volume at melting point for Pt, Ni and Pd nonlinearly 
decreases wth the increase of pressure. at the same pressure, 
the jump of volume at melting point for Pt is larger than that 
for Pd and the jump of volume at melting point for Pd is larger 
than that for Ni.

Fig. 7. ∆vm(P) for Pt, Ni and Pd at T = 300 K

TaBLe 3

Tm, (∂Tm) /(∂P), ∆vm, ∆Hm and ∆Sm for Pt under pressure

P (gpa) 0 30 50 60
Tm (K) 2253 3132.3 3666.6 3903.3

(∂Tm) /(∂P) (K/gPa) 31.12 28.40 21.64 21.54
∆vm  (10–30 m3) 1.384 1.206 1.17 1.158

∆Hm (mev) 100.20 133.01 198.24 209.84
∆Sm (kB) 0.0445 0.0425 0.054 0.0537

TaBLe 4

Tm, (∂Tm) /(∂P), ∆vm, ∆Hm and ∆Sm for Ni under pressure

P (gpa) 0 30 50 60
Tm (K) 1787 2312 2739 3096

(∂Tm) /(∂P) (K/gPa) 28.0 25.2 21.0 18.2
∆vm  (10–30 m3) 1.232 0.973 0.925 0.909

∆Sm (kB) 0.044 0.0386 0.044 0.05

TaBLe 5

Tm, (∂Tm) /(∂P), ∆vm, ∆Hm and ∆Sm for Pd under pressure 

P (gpa) 0 30 50 60
Tm (K) 1925 2857.4 3114.4 3548.2

(∂Tm) /(∂P) (K/gPa) 33.88 23.92 17.68 17.66
∆vm  (10–30 m3) 1.383 1.147 1.126 1.100

∆Hm (mev) 78.56 137.02 198.35 221.01
∆Sm (kB) 0.041 0.046 0.064 0.062

4. Conclusion

We present the melting theory and the theory of Debye 
temperature for perfect and defective cubic metals under pres-
sure mainly derived from the SMM. The SMM calculations of 
melting temperatures for Ni, Pd and Pt agree well with available 
experimental and theoretical data. our SMM calculations of 
other physical quantities such as the jumps of volume, enthalpy 
and entropy at melting point, the isothermal compressibility, 
the thermal expansion coefficient, the heat capacity at constant 
volume, the gruneisen parameter and the Debye temperature for 
Ni, Pd and Pt in the range from 300 to 2000K and from zero to 
100 gPa are highly reliable. 
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