1. Introduction

Boron carbide (B₄C) ceramics have excellent physical and mechanical properties, such as a high melting point and hardness, good abrasion resistance, high impact resistance, excellent resistance to chemical agents and high neutron absorption capabilities[1-6]. As a good ceramic material, boron carbide (B₄C) has attracted attention in a wide variety of applications, including light-weight armour plating, blasting nozzles, mechanical seal faces, grinding tools, cutting tools and neutron absorption materials. However, B₄C ceramics are hardly sinterable and relatively brittle and thus face serious obstacles for any structural material because of their low flexural strength (200–300 MPa) and fracture toughness (2–3 MPa·m¹/₂)[3, 7-9].

Recently, Al/B₄C composites have received attention because they feature the mechanical properties of B₄C enhanced by Al infiltration to the ceramic material[10, 11]. However, a large amount of reaction products are formed during the infiltration process at high temperatures. It has been reported that approximately 30 vol.% of new phases occur from initially 38 vol.% aluminium and 62 vol.% B₄C[11-13]. The reaction products tend to form large, granular clusters, resulting in a lower strength regardless of the phase. Meanwhile, the toughness is also considerably reduced.

Lee et al. prepared TiB₂-coated B₄C powder using B₄C powder and Ti(OH)₄ via the sol–gel process. The new generation of TiB₂ has reasonable wettability with aluminium, which can greatly enhance infiltration kinetics during the preparation of B₄C/Al composite[11].

Du et al. found that AlB₁₂ addition can improve the mechanical properties of B₄C-Al, which is attributed to the existence of a metastable stress-induced phase transition of AlB₁₂ from the β-phase to the α-phase below 1550°C[14]. However, the infiltration temperature was too high to reduce the interface reaction.

Lü et al. reported that TiB₂ synthesized in situ from B₄C and TiO₂ could effectively improve the mechanical properties of
the B\textsubscript{4}C–TiB\textsubscript{2}–Al composite fabricated by vacuum infiltration with B\textsubscript{4}C and Al\cite{15}. However, extraneous elements entered the composite, leading to the presence of more impurities in the composite materials.

The effect of Ti addition on preform porosity in the preheated process has not been studied. In addition, no studies have reported the effect of Ti addition on the residual amount of Al and the corresponding mechanical properties of B\textsubscript{4}C-Al affected by the preform porosity.

In the present study, high-volume-fraction B\textsubscript{4}C-Al composite materials including four different preform Ti contents were fabricated by the vacuum infiltration method. The effect of Ti addition on the preform porosity, residual amount of Al and corresponding mechanical properties of the B\textsubscript{4}C-Al composites were discussed. To reduce oxygen disturbance, the infiltration process was performed under vacuum.

2. Experimental

The starting materials used in this work were Ti powder (99.8% purity, average particle size under 38 μm), B\textsubscript{4}C powder (97% purity, average particle size under 15 μm) and aluminium alloy (trademark 5083). The chemical composition of the aluminium alloy is shown in Table 1.

The Ti and B\textsubscript{4}C powders were blended using a rolling ball mill with polyurethane balls for 24 h. Next, the Ti-B\textsubscript{4}C powder was mixed with PF resin-acetone solution as an adhesive. The resulting powders were granulated using a 60-mesh sieve for further use, and the mixtures were uniaxially cold pressed into 30-mm-diameter preforms in a stainless-steel die under 150 MPa maintained for 1 min.

2.1. Composite Preparation

[Ti+B\textsubscript{4}C] preforms with different Ti contents (S1: 10% Ti; S2: 20% Ti; S3: 30% Ti; S4: 40% Ti) were manufactured in a vacuum carbon tube furnace by preheating from room temperature to 1700°C (10°C/min) and then maintaining this temperature for 1 h. Graphite crucibles were prepared to carry out the experiments. The composition of the preforms is shown in Table 2. Al ingot (5083) was placed on top of the [Ti+B\textsubscript{4}C] preform compact to prepare the B\textsubscript{4}C-Al composite. The crucible containing Al ingot and [Ti+B\textsubscript{4}C] preform was placed in the furnace and heated to 1100°C under vacuum at a rate of 10°C/min. The peak temperature was held for 2 h, and then the crucible was cooled inside the furnace.

2.2. Phase and Microstructure Analysis

The phases of the composite materials were examined using a Philips X-ray diffraction (XRD) instrument with Cu K\textsubscript{α} radiation at a scan rate of 10°/min. The detailed structure of the fresh interfaces was investigated by scanning electron microscopy (SEM). In addition, EDX was used to determine the composition of the phases and to analyse the matrix composite interface.

The porosity of the composite materials was measured using the Archimedes method. According to the hardness of boron carbide, the test uses the WE-10A hydraulic universal testing machine. The fracture toughness was measured by the single-edge notched beam method (specimen size = 28 mm × 4 mm × 3 mm, notch width = 0.2 mm, notch depth = 2 mm, bend span = 20 mm and load speed = 0.05 mm/min). The ASTM test standard concerning fracture toughness is ASTM E1922-04 (2010)e1.

3. Results and discussion

3.1. Phases of the Composites

The XRD patterns of the S3 [Ti+B\textsubscript{4}C] perform with 30% Ti and the S3 B\textsubscript{4}C-Al composite material synthesized by vacuum infiltration are shown in Fig. 1. According to the XRD results, TiB\textsubscript{2} was formed in the preheating treatment. As mentioned, a TiB\textsubscript{2} coating on the B\textsubscript{4}C surface is desirable, as it can enhance the wettability with Al. Possible reactions (1) and (2) are thus \cite{16}

\[
5Ti + B_4C = 4TiB + TiC \tag{1}
\]

\[
6TiB + B_4C = 5TiB_2 + TiC \quad T>1300°C \tag{2}
\]

As revealed by the XRD analysis of S3 after infiltration, the Al\textsubscript{13}BC phase existed in the composite material, which indicated that the reaction B\textsubscript{4}C and Al occurred during the metal infiltration process. This finding confirmed that infiltration of the molten aluminium into the preform leads to reaction (3) \cite{17}:

\[
13Al_{(l)} + 4B_4C_{(s)} \rightarrow 4Al_{(l)}BC_{(s)} + B(Al) + AlB_{12(s)} (T>985°C) \tag{3}
\]

From the XRD results, it can be seen that little Al\textsubscript{13}BC was produced, while the AlB\textsubscript{12} phase was not observed in Figure 1 due to its low content and intensity relative to the main phases.
3.2. Microstructure and Mechanical Properties

The microstructures of the [Ti+B4C] preforms containing different Ti contents (10%, 20%, 30%, 40%) after preheating are shown in Figure 2. The microstructures observed in the images reveal that the particle size decreases and flakes appear with increasing Ti content, significantly enhancing the [Ti+B4C] preform density. When the Ti content was 30%, the flakes were most abundant and the matrix was densest. Flakes covered almost the entire region, which exhibited a ceramic basic structure. This microstructure is consistent with the porosity test results.

As seen in Table 2, the porosity and hardness of composite materials have great relevance. When the Ti content is 30%, the preform porosity is 33.11% (minimum), while the corresponding composite hardness (HRC) is 63 (maximum). Figure 3 shows the hardness and porosity of the B4C-Al composite as a function of Ti content. It can be observed that the behaviours of the fracture toughness and porosity curves are strikingly similar. The fracture toughness of the B4C-Al composite can also result from the residual Al content after infiltration. As the Ti content increased from 10% to 30%, both curves exhibit almost the same trend; however, as the Ti content increased from 30% to 40%, the amount of residual Al remains at approximately 10%, while the toughness increment is slight.

For the B4C-Al composite, the aluminium content is found to be a main factor affecting fracture toughness. The production of TiB2 has in fact led to the presence of residual Al. According to the porosity results, the content of residual Al decreased with increasing Ti content, which will reduce the fracture toughness of the B4C-Al composite.

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>Shrinkage factor (preform)</th>
<th>Porosity preform (residual Al)</th>
<th>Hardness (HRC)</th>
<th>Fracture toughness (MPa m(^{1/2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>10% Ti, 90% B4C</td>
<td>-2%</td>
<td>52.79%</td>
<td>12.25</td>
<td>7.75</td>
</tr>
<tr>
<td>S2</td>
<td>20% Ti, 80% B4C</td>
<td>0.33%</td>
<td>48.24%</td>
<td>37.67</td>
<td>6.64</td>
</tr>
<tr>
<td>S3</td>
<td>30% Ti, 70% B4C</td>
<td>3.3%</td>
<td>33.11%</td>
<td>63</td>
<td>5.03</td>
</tr>
<tr>
<td>S4</td>
<td>40% Ti, 60% B4C</td>
<td>1%</td>
<td>43.26%</td>
<td>61.33</td>
<td>5.06</td>
</tr>
</tbody>
</table>

The preform porosity reveals that a residual amount of Al infiltrated the preforms.
Figure 5 shows the SEM images of the B₄C-Al composite materials with different Ti contents. Comparing the four micrographs, it can be observed that metal dimples exist almost everywhere in Figure 5 (A) but gradually decrease in prevalence with increasing Ti content. In addition to metal dimples, holes caused by the removal of particles were found in Figure 5 (C), whereas such holes were not clearly observed in the other micrographs. Analysing these micrographs, it can be found that the metal dimples are smaller and more fragmented in Figure 5 (C), which may be due to the compactness of the preform.

The micrographs of the polished B₄C-Al composite materials with different Ti contents are shown in Figure 6. It can be observed that the silver particles gradually increased in prevalence with the Ti content and were surrounded by white rings.

To further study the main component of the B₄C-Al composite materials, the grain boundary phase analysed by EDS is shown in Figure 7. It is clear that the white rings are TiB₂, the material in the centre is Al, the outer rings of grey material are Al₃BC, and the black material is B₄C. The distribution of the materials reveals that the addition of Ti generated TiB₂, which effectively protected the existence of Al, thus avoiding the reaction of Al and B₄C. In contrast, unprotected Al participates in the interface reaction, generating a large amount of the interface product Al₃BC. These products were fabricated by these reaction formulas (1), (2) and (3) during the preheating and infiltration processes.

4. Conclusion

1. In the preheating process, a TiB₂ coating formed on the B₄C surface. The XRD results for the composite material indicated the presence of the Al₃BC phase during the metal infiltration process.
2. When the Ti content is 30%, the [Ti+B₄C] preform has the minimal porosity (33.11%) and the composite has the
maximal hardness (63 HRC). The density of the preform is the factor actually affecting the hardness of the B₄C-Al composite materials.

3. The relative curves of porosity and fracture toughness are amazingly similar. The content of residual Al is found to be the main factor affecting the fracture toughness.

4. Ti addition can cause changes in the preform porosity, which triggers a series of changes in the amount of residual Al and the mechanical properties of the composites.

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 51204043, No. 51472048) and Major Program of the National Natural Science Foundation of China (No. 51090384).

REFERENCES

Received: 10 September 2014.