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Evaluating thE Durability of SiC-CoatED Carbon CompoSitES  
unDEr thErmal ShoCk ConDitionS 

oxidation and indentation properties of silicon carbide-coated carbon composites were investigated to analyze its durability 
under atmospheric thermal shock conditions. The silicon carbide-coated samples were prepared either with chemical vapor depo-
sition or chemical vapor reaction/chemical vapor deposition hybrid coating. The remnant weight of uncoated and coated samples 
was investigated after each thermal shock cycle. The surface and cross-section of coated samples were then analyzed to confirm 
morphological changes of the coating layers. The spherical indentation test for uncoated and coated samples were also performed. 
As a result, silicon carbide coating improved the oxidation resistance, elastic modulus, and hardness of carbon composites. hybrid 
coating drastically enhanced the durability of samples at high temperature in atmospheric conditions. 
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1. introduction

Carbon composites have excellent thermal shock resist-
ance and good mechanical properties at elevated temperatures 
and non-oxidizing environments. however, carbon composites 
rapidly oxidize above 500°C in atmospheric conditions, which 
restricts their application in civil and military fields [1,2]. 
Therefore, methods such as ceramic coating were studied to 
improve the oxidation resistance of carbon composites at high 
temperatures. Silicon carbide (SiC) is a potential material for 
ceramic coating owing to its good thermal stability and compat-
ibility with carbon composites [3]. SiC-coated composites have 
high hardness and chemical stability, which are directly related 
to erosion resistance properties [4].

in our previous report, we suggested an effective coating 
method via a combination of chemical vapor reaction (CVR) and 
chemical vapor deposition (CVD) processes to protect carbon 
composites against high-temperature oxidative torch flame [5]. 
however, to estimate service life and wear resistance at certain 
temperatures, it is necessary to perform the thermal shock test 
with microstructural and mechanical analysis [6]. 

in this study, SiC-based deposition of dense and high-
quality coating on carbon composites via CVD or CVR/CVD 
processes was conducted. The thermal shock tests were per-

formed to evaluate the durability of composites in high oxidative 
surroundings. The measured weight change was compared with 
that of original carbon composites after each cycle. The mecha-
nism of crack-formation and delamination of the coating layer 
was investigated to evaluate thermal durability of the samples. 
in addition, investigating mechanical properties such as relative 
elastic modulus and hardness provided an estimate for the wear 
resistance of composites. 

2. Experimental 

2.1. preparation of samples

Carbon composites with 1.6 g/cm3 density were manu-
factured by the needle punch process and densification process 
with impregnation and carbonization conducted at atmospheric 
pressure using a coal tar pitch. The carbon composites were 
shaped to a size of Ø30×5 mm to characterize the durability of the  
coating.

The SiC coating process was performed on both sides of 
composites through the CVR and CVD processes. The coating 
conditions were presented in our previous article [5]. Two kinds 
of coating samples were prepared and designated as D and RD. 
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Sample D and RD indicate the 2 cycles of the CVD and 1 cycle 
of the CVR processes performed on the composites, respectively. 
For sample RD, 2 cycles of the CVD process were applied after 
CVR. The sample names according to coating methods are sum-
marized in Table 1. 

TABLE 1

Name of samples

Sample name Coating method
C/C uncoated
D CVD (2 cycles)

RD CVR (1 cycle) + CVD (2 cycles)

2.2. Experiment and characterization

The thermal shock test was performed using a heating 
furnace (Ajeon industry, korea) in atmospheric conditions to 
evaluate the durability of coating layers. The test was performed 
in triplicate for each sample type. Samples were embedded in 
the Al2o3 crucible, packed with Al2o3 powder, and loaded in 
the heating furnace. The furnace temperature was increased to 
1500℃ at a heating rate of 5℃/min, then maintained for 1 h and 
cooled to room temperature. This cycle was repeated 5 times, 
and the weight remnant ratio of samples was calculated for each 
cycle [7]. The morphologies of SiC coated samples before and 
after the thermal shock test were analyzed using scanning elec-
tron microscopy (SEm) (Quanta FEg 650). Energy-dispersive 
X-ray spectroscopy (EDS) analysis was also performed.

To evaluate the mechanical properties, the spherical in-
dentation test was performed on the surface of uncoated carbon 
composites and the SiC-coated composites before and after the 
thermal shock cycles. During the spherical indentation test, 
a constant indentation load (P, 500 N) was applied on each 
sample using a tungsten carbide (WC) ball with a radius (r) 
of 3.18 mm to obtain an indentation load-displacement (h) 
curve. The crosshead speed was 0.2 mm/min during loading 
and unloading, and the test was performed in atmospheric 
conditions [7,8]. The elastic modulus is determined by drawing 
a tangent slope (dP/dh) at 80 % of the maximum load in the 
unloading curve. The hardness is determined by the residual 
displacement (hp) (Fig. 4). The relative elastic modulus and 
the relative hardness was obtained by dividing values of D and 
RD with the original value of C/C, before and after the test,  
respectively.

3. results and discussion

Fig. 1 shows the changes in the weight remnant ratio during 
the thermal shock test through images of coated composites after 
5 cycles of testing. As the tests were performed, the weight rem-
nant ratio of samples decreased with each cycle. The crack was 
more clearly visible on the surface of D than on RD. uncoated 

carbon composites samples nearly disappeared after the test; 
two samples were completely oxidized and only 0.01 wt.% of 
the other sample remained. The weight remnant ratio of coated 
samples, D and RD, was 77.91% and 97.08%, respectively. 
hence, the SiC coating layer effectively prevented the oxidation 
of carbon composites. Furthermore, using CVR to apply the 
interlayer of SiC coating could enhance the thermal protection 
properties of samples in oxidative surroundings. 

Fig. 1. Photo images after 5 cycles of the thermal shock test: (a) RD, 
(b) D, and (c) curves of weight remnant ratio as a function of oxida-
tion test cycles

To analyze the prevention of oxidation, surface and cross-
sectional micro-scale SEm images were obtained before and after 
the thermal shock test. Fig. 2 shows the surface morphologies of 
SiC-coated samples before and after the test. Before the thermal 
shock test, the crack width of D and RD was 1-5 and 1-3 µm, 
respectively. The variation in crack width was due to a mismatch 
in the thermal expansion coefficients of carbon and SiC [9]. After 
the thermal shock test, the crack width of D was 60-80 µm, as 
seen from Fig. 2(c). however, in Fig. 2(d), the crack width of 
RD was 4-7 µm, showing little change in crack width than that 
of the original RD. The coating layer of RD preserved the shape 
of composites during the thermal shock test. 

Fig. 3 shows the cross-sectional SEm/EDS images of coated 
samples before and after the thermal shock test. SEm analysis 
was performed in the backscattered electrons mode to discern 
coating layer/substrate interface. in Fig. 3(a) and Fig. 3(b), 
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SiC phases were formed by CVR and CVD processes and the 
lengths of SiC coating layer of D and RD were 80-110 µm and 
100-140 µm, respectively. After thermal shock test, SiC phases 
transformed to Sio2 layer due to thermal oxidization [10]. The 
formation of Sio2 was confirmed by EDS analysis as shown in 
Fig. 3(c) and Fig. 3(d). in those Figures, Aluminum phases were 
detected due to the test environment, and it could be negligible. 
in the SEm image of Fig. 3(c) and Fig. 3(d), the formation of 
Sio2 phase increased the average coating layer thickness of 
coated samples and several paths in coating layers were created 
along the length of the sample due to oxygen diffusion [11]. For 
sample D, after the thermal shock test, the coating layer was 
completely detached from the C/C substrate. An aperture was 
formed between the detached coating part and substrate, which 
accelerated the weight loss of carbon composites, and carbon 
sources were exhausted. however, for RD, the coating layer did 
not separate from the C/C substrate, and carbon sources of the 
composites did not disappear easily.

This phenomenon occurs due to the thermal stress (σ) of 
coated composites during the thermal shock test. There is a mis-
match of thermal expansion between the C/C substrate and the 
coating layer, and it is calculated by Eq. (1) [12]: 
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where, α is coefficient of thermal expansion, E is Young’s modu-
lus, μ is Poisson’s ratio, H is the thickness of the material, and 
ΔT is the temperature difference. The subscripts 1 and 2 indi-
cate the properties of carbon composites and SiC coating layer, 
respectively. Table 2 displays the values for μ, E, and α based 
on previous reports [13-17]. The calculated thermal stress of 
sample D and RD was 4254 and 4186 mPa, respectively. This 
thermal stress induces residual tensile stress during cooling 
because the thermal expansion coefficient of the SiC-coated 
layer is greater than that of the C/C substrate. The detachment 
of the Sio2 coating layer in sample D can be attributed to the 
adhesive bond strength of CVD coating, which cannot endure 
residual tensile stress. Applying CVR coating before the CVD 

Fig. 2. Surface SEm images of coated samples before/after the thermal shock test: (a) D and (b) RD before the test, and (c) D and (d) RD after the test

TABLE 2

Parameter values for calculating thermal stress

parameter value
α1 –0.74×10–6 /k
α2 –0.74×10–6 /k
E1 210×109 N/m2

E2 450×109 N/m2

μ1 0.307
μ2 0.142
H1 5×10–3 m
H2 D: 0.105×10–3 m, RD: 0.120×10–3 m
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coating improves the adhesive strength between the coating 
layer and the C/C substrate by endowing roughness to carbon 
composites [5]. The crack propagation visible in Fig. 2 can be 
induced from the residual tensile strength and detachment of the 
coating layer in sample D. Applying CVR coating before CVD 
coating effectively improves thermal durability and the service 
life of carbon composites.

Fig. 4 shows that the spherical indentation test was per-
formed before and after the thermal shock to evaluate mechanical 

properties and wear resistance. The elastic modulus is calculated 
using Eq. (2) [18]: 
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where E is elastic modulus, R is tip radius, and he is elastic depth. 
The difference of residual displacement (hp) and maximum dis-
placement (hm) provides the value for elastic depth (he) (Fig. 4).

Fig. 3. Cross-sectional SEm/EDS images of coated samples before/after the thermal shock test: (a) D and (b) RD before the test, (c) D and (d) 
RD after the test
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The hardness (H) is determined by dividing the load (P) by 
the surface area of indentation (A) as presented in Eq. (3), and 
this area is calculated using Eq. (4). [19]:

 
PH
A

   (3)

 A = 24.5hp
2 (4)

Fig. 5 shows the relative elastic modulus and hardness of D 
and RD. Before the thermal shock test, in sample RD, the rela-
tive elastic modulus and relative hardness were 29% and 37% 
higher, respectively, than that of sample D. After the thermal 
shock test, the elastic modulus and hardness of RD were 16% 
and 15%, respectively, higher than that of sample D. Performing 
the CVR process before the CVD process improves the elastic 
modulus and hardness of the sample. These effects remain after 
the conclusion of the thermal shock test. 

Fig. 4. indentation load-displacement curves of uncoated and coated 
samples before/after the thermal shock test

4. Conclusions

The thermal durability and mechanical properties of the 
SiC-coated carbon composites were investigated in an oxida-
tive environment. The CVD and the CVR process was used to 
deposit the coating on samples. After the thermal shock test, the 
weight remnant ratio of samples decreased with every cycle. 
After the test, the bare C/C samples nearly disappeared, and the 
remained weights of coated samples, D and RD, were 77.91% 
and 97.08%, respectively. The coating layer of RD was not 
detached after the thermal shock test because RD endured the 
thermal stress (4186 mPa). The relative elastic modulus and 
the relative hardness of the sample RD were higher than those 
of D, even after the thermal shock test. These results show that 
performing the CVR process before the CVD coating effectively 
improves the thermal durability and mechanical properties of 
carbon composites in oxidative surroundings. 
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