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The work concerns numerical analysis of thermal phenomena, phase transformations and mechanical phenomena associ-
ated with hardening of carbon steel C80U. The following transformations were assumed: initial structure — austenite, austenite
— perlite, bainite and austenite — martensite. Numerical algorithms for evaluation of fractions of phases and their kinetics
based on continuous heating and cooling diagrams (CCT) were worked out. In the algorithm of thermal phenomena relation
of thermophysical values to temperature and source of phase transformations were taken into account. The dilatometric tests
on the simulator of thermal cycles were performed, during which the hardening of the elements made of carbon steel C80U
was simulated. The results of dilatometric tests were compared with the results of the test numerical simulations. In this
way the derived models for evaluating phase content and kinetics of transformations in heating and cooling processes were
verified. The stresses generated during hardening were assumed to result from thermal load, structural plastic deformations
and transformation plasticity. The hardened material was assumed to be elastic-plastic, and in order to mark plastic strains
the non-isothermal plastic law of flow with the isotropic strengthening and condition plasticity of Huber-Misses were used.
Thermophysical properties present in the model of mechanical phenomena were made dependant on both the phase composition
and on temperatures. The results of numerical simulations confirm correctness of the algorithms that were worked out.

Praca dotyczy analizy numerycznej zjawisk cieplnych, przemian fazowych i zjawisk mechanicznych towarzyszacych harto-
waniu weglowej stali C80U. Zatozono istnienie przemian: struktura wyjSciowa — austenit, austenit — perlit, bainit oraz austenit
— martenzyt. Opracowano algorytmy numeryczne szacowania utamkéw faz oraz ich kinetyki oparte na wykresach ciaglego
nagrzewania oraz ciagtego chtodzenia (CTP.). W algorytmie zjawisk cieplnych uwzgledniono zalezno$¢ wielkosci termofi-
zycznych od temperatury oraz Zrédla przemian fazowych. W celu zweryfikowania modelu szacowania udziatéw fazowych i
kinetyki przemian w procesach nagrzewania i chtodzenia wykonano badania dylatometryczne na symulatorze cykli cieplnych,
podczas ktérych symulowano hartowanie elementéw wykonanych ze stali C80U. Wyniki badan dylatometrycznych poréwna-
no z wynikami symulacji numerycznej. Przyjeto, ze napr¢zenia generujgce si¢ podczas hartowania sa wynikiem obcigzenia
termicznego, odksztalceri strukturalnych, plastycznych i odksztalcen transformacyjnych. Zatozono, ze hartowany material jest
sprezysto-plastyczny, a do wyznaczania odksztalcenl plastycznych zastosowano prawo nieizotermicznego plastycznego plynigcia
ze wzmocnieniem izotropowym i warunkiem plastyczno$ci Hubera-Misesa. Wielkosci termofizyczne wystepujace w modelu
zjawisk mechanicznych uzalezniono zaréwno od sktadu fazowego jak i od temperatury. Wyniki symulacji numerycznych
potwierdzaja poprawno$¢ opracowanych algorytméw.

1. Introduction final properties to define the type and the property of

the microstructure formed in the process of heating, and

The numerical modelling of the heat-treatment pro-
cess, and then its simulation and control, requires many
phenomena concurrent to such process to be taken into
account. The correct prediction of the final proprieties
is possible after defining the type and the property of
the nascent microstructure of the steel- element in the
process of heating, and then the cooling treated ther-
mally. It is essential for the correct prediction of the
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then cooling of the heat treated steel-element. To achieve
this, it is necessary to establish equations describing:
fields of temperature, phase transformations in the solid
state, as well as strains and stresses generated during the
heat-treatment [1-6].

In the past the kinetics of phase transformations was
determined only by curves of the cooling and a suitable
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transformations graph. Subsequently the kinetics deter-
mined stress distributions. At present the simulation of
this phenomenon, based on the theory of the nucleation
and the growth of grains, also involves transformation
strains and heat sources of phase transformations are
taken into account when modelling thermal phenomena
[7]. The accuracy figure of the calculation of residual
stresses during hardening depends on how precise the
computer calculations of the temperature fields are.

Nowadays models of heat-treatment processes (hard-
enings) are being developed to include similar phenome-
na in processes of hot forming, such as: forging, rolling,
welding etc. [8—12].

In many models, the coefficient of surface film con-
ductance from hardened element surface was acknowl-
edged as constant, or accepted as the linear function of
temperature. In reality it is a non-linear function of tem-
perature and surface quality [4, 5].

In numerical simulations of hardening processes of
steel it is required to include transformation plasticity in
models. This phenomenon causes irregular plastic flow
of metals which takes place during phase transformations
in the solid state [4, 13-15].

The last decade saw strong evolution of numerical
methods whose aim to a greater or smaller extent was to
design processes of heat-treatment. Every work dealing
with this topic should contain thermal, microstructural
and stress analysis. To implement this type of algorithms
one usually applies the FEM which makes it possible to
take into account both nonlinearities and inhomogeneity
of thermally processed material. Special emphasis put
on the development of this branch of numerical meth-
ods is inspired by the industry, which demands tools
improving heat-treatment processes because of modern
technologies and costs reduction trends [10, 16, 17].

On the basis of the current state of knowledge
on hardening and data on mathematical and numeri-
cal modelling of heat-treatment phenomena, particular-
ly - hardening, a complex model of hardening of the
shallow-hardening tool steel was designed. The mod-
el includes thermal phenomena, phase transformations
and mechanical phenomena. The designed computer pro-
gramme enables hardening simulation of this steel as
well as of steel with a similar chemical composition.

2. Phase transformations in hardened tool carbon
steel

An array of different mathematical models was cre-
ated after an analysis of received results. The elementary
unit of almost all studies concerning transformations of
the austenite into the ferrite, the pearlite and the bainite,
is the Avrami equation [1, 14] for models based on TTT

graphs and generalised Kolmogorow, John-
son-Mehl and Avrami equation for models using
the classical theory of the nucleation [11, 13]. Where-
as the fundamental equation for the austenite-martensite
transformation is the Koisitenen and Mar-
burger equation [4, 13, 18].

The choice of the suitable model may depend on the
manner in which the hardening simulation is carried out.
This can be the parallel simulation of thermal phenome-
na, phase transformations and mechanical phenomena or
block- simulation arranged in rows — the thermal block,
the block of phase transformations, and then the block
of mechanical phenomena [5].

One ought to underline that in the block- simulation
arranged in rows it is impossible to take into account the
influence of the phase transformation heat on changes in
temperature, both in the process of heating and cooling.
This phenomenon is of little importance in the process
of heating, however in the process of cooling (especial-
ly during the volumetric hardening) one noticed a sig-
nificant influence of the phase transformation heat on
changes in temperature within the range of the pearlite
transformation existence [1, 7].

In the model of phase transformations graphs of
continuous heating (CHT) and cooling (CCT) are used
[19]. The phase fraction transformed during continuous
heating (austenite) is calculated in the model using the
Johnson-Mehl and Avrami formula:

n, (T,1) = Z Nfp (1 —exp(—b (fs, tf) (t (T))n(t,v,tf)) ,
2.1)

where: b(t,17) and n(t, 1) are coeflicients calculated
assuming the initial fraction ((17,) and the final fraction
(nr)), while 77, is a sum of fractions of the initial struc-
ture phases (most often it is a ferrite-pearlite or pearlite
structure, and .77, = 1).

Coefficients b and n are calculated using the formula
(2.1) and on condition that the part of the nascent phase
equals ”n,” during ;" and "5 in time “#;”. Formulas
for these coefficients have a form:

In (ln (n5)/In (Uf))’ ( f) _~In (’7f>

In (/1) @ (2’ .

n (ts, tf) =

where: 1, = 1(Ty), ty = t;(Ty), n, = 0.01, ny = 0.99,
from the assumption.



The phase fraction during cooling, i.e. the ferrite
or cementite fraction, the pearlite fraction or the bainite
fraction are calculated using the formula:

ne (T,0) = B(1 —exp (=b (1)),

% f > n%
N B
n for n < 77;7_”) &

where: UZG) is the maximum phase fraction for the estab-

lished of the cooling rate, estimated on the ground of the

continuous cooling graph, n is the fraction of austenite
=y

created in the process of heating, and )’ 7, denotes the
k
sum of fractions of phases created earlier in the cooling
process.
The fraction of the martensite formed below the

temperature M, is calculated using the Koistinen
and Marburger formula [1, 18]:

v (T) =B (1 —exp (=k(M, = T)™)),
In (5 = 0.1)
M- M;

2.4)
k=

where: m is the constant chosen by means of experiment;
for examined steels it is accepted that m = 1, whereas
the constant “k” is calculated based on the condition that
the transformation finishes at the temperature My, B is
defined in (2.3).

For steel C80U for which M; ~ 240°C,M; =~
—60°C, the constant k equals: k ~ 0.008. This coefficient
is comparable with the coefficient presented in literature
as empirical (¢ ~ 0.01) for near-eutectoid carbon steels
(4, 14].

2.1. The experiment and the verification
of the model

The purpose of the dilatometric research was to
analyse phase transformations during heating and con-
tinuous cooling of steel C80U, undergoing quick heat-
ing and then cooling at different rates. Dilatometric re-
search was done in the Institute for Ferrous Metallurgy
in Gliwice by means of a dilatometer DIL80S produced
by Bihr Thermoanalyse GmbH. The dilatometer was
equipped with a measuring- head of LVDT type, of the-
oretical resolution: +0.057 pum. Temporary temperature
deviations from a given value did not exceed +0.5°C.

During the research critical temperatures Ac; and
Ac., at fast heating (100°C/s) were defined. Also austen-
ite phase transformations of the examined steel dur-
ing simulated cycles of cooling (construction of the
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CCT graph) were studied. The error of a single re-
sult of the conversion temperature estimation did not
exceed +£5°C. Particular components of the examined
steel: 0.84C, 0.19Mn, 0.21Si, 0.006P, 0.003S, 0.11Cr,
0.08Ni, 0.03Mo, and 0.14Cu (%) remain within the
range of admissible values defined by a suitable standard
(PN-85/H-93002). Cylindrical samples ¢4/2x10 mm and
¢4/3x10 mm (for the velocity of cooling >50°C/s) were
used.

Heating to austenization temperature (1100°C) was
carried out in the vacuum (pressure <1x10~* mbar) with
the velocity of 100°C/s, the heating (the austenization
time) equaled 2 seconds (the same for all samples); the
cooling of samples was carried out at different rate, es-
tablished at.: 300, 200, 150, 100, 50, 30, 20 and 10°C/s.

For the established heating rate the temperatures of
the beginning (Acp) and the end of austenization (Acc,)
were equal: 784 and 852+4°C respectively, whereas
equilibrium temperatures Ac; and Ac., for this steel
equal ~740 and ~760°C respectively [5, 19, 20].

After dilatometric tests the examination of the
microstructure of samples, and measurement of their
microhardness were carried out. Microsections of
cross-sections of samples (in the half of their length)
were etched with nital. The microstructures were ob-
served and the pictures were recorded by means of the
optical microscope Axiovet 25, manufactured by Zeiss,
and a digital camera. A short description of the obtained
microstructures of the steel C80U depending on the rate
of cooling and their average hardness are given in the
Table 1.

Using temperature curves, diagrams of individual
dilatometric tests, fraction phases were assessed based
on the examination of microstructures (figs. 10 and 11),
and measurements of the microhardness, (tab. 1), the
CCT graph of steel C80U was constructed (fig. 1). Bas-
ing on this graph, as well as on the CCT graph of steel
C80U found in literature [19], the CCT graph was shift-
ed so that it could be used for numerical simulation of
phase fraction and phase kinetics (fig. 1). The graph shift
results from the assumption present in the numeric algo-
rithm that the calculation of the cooling process begins at
the point when the temperature T(t.oo1=0) = 810°C (1083
K) (While calculating the phase fraction the time of the
cooling is counted from the moment of the intersection
of the temperature curve of the cooling with a line T =
810°C, i.e it is assumed that time t.,,—¢ at the moment
of the intersection). This assumption was made on the
basis of literature data [19].

In order to verify the model of phase transformations
test- numerical simulations were carried out. Results of
these simulations and appropriate comparisons to the ex-
periment results are presented in pictures 2-5.
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TABLE 1
Average microhardness and observed microstructures depending on the cooling rate
Vool Microhardness Critical temperatures, °C Observed microstructure
°C/s HV 0.04 M, | B; | Bf | P P
10 370 670 | 612 pearlite- residual cementite
20 373 665 | 589 pearlite- residual cementite
30 416 241 640 | 545 pearlite- residual cementite
100 1055 235 | 308 608 | 424 martensite- residual bainite -retained austenite
200 1050 230 | 295 480 | 380 | acicular martensite- residual bainite-retained aust.
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Fig. 1. The Time-Temperature-Transformation graph (CCT) for steel C80U and the shifted graph
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Fig. 2. Experimental and simulated dilatometric curves, cooling rate: a) 10 K/s, b) 30 K/s
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Fig. 6. Microstructure of investigated steel after cooling, zoom %200, cooling rate: a) 30 K/s, b) 300 K/s

The increment of the isotropic strain provoked by
temperature change and phase transformations in the
processes of warming and cooling are calculated using
formulas [5]:

=5
de™ = Zi_:l amdT — sﬁhdny,
2.5)

where: a; = «; (T) are thermal expansion coefficients of:
austenite, bainite, ferrite, martensite and pearlite, efh is
an isotropic strain accompanying the conversion of the
final structure into austenite, whereas sfh = sfh (T) are
isotropic strains from phase transformations of: austenite
into bainite, ferrite or cementite fraction, martensite or
austenite into pearlite respectively. In the steel C80U the
cementite fraction is residual (<3%) and is a part of the
pearlite, so o3 = 0 and 173 = 0.

These values are set based on experimental research
executed on the simulator of thermal cycles. The curves
of the CCT diagram are entered to a suitable module
used to calculate phase fractions. The curves are supple-
mented with information on the maximum fraction of a
definite phase (nz‘;). Suitable range determines cooling
rates estimated up to the point when the temperature
reaches the curve of the transformation start.

Based on comparisons of experimental and sim-
ulator dilatometric curves for the examined steel, val-
ues of thermal expansion coefficients (a() = ) (T))
and isotropic structural strains (85 ;l ) of each
micro-constituents were determined. They equal: 22,
10, 10 and 14.5 (x107%) [1/K] and 1.9, 4.5, 8.7 and 1.5
(x1073) for austenite, bainite, martensite and pearlite
respectively.

Because of the fact that the coefficient of thermal
expansion for pearlitic structure of the examined steel
depends significantly on the temperature, an approxima-

tion of this coeflicient using the square function of the
form was applied:

ap(T) = =1.2955-10""17%+2.5232-10°87+3.7193-107°.

3. Model of thermal phenomena of the hardening
process of steel

In the algorithm of thermal phenomena in the hard-
ening process of steel the conductivity equation is used:

oT (x,1)

V- (AVT (x,1) — Cof > =-0x,1, (3.1

where: 4 = A(x) is the heat conductivity coefficient
[W/(mK)], C,;y = C.r(x) is an effective heat capacity
[J/(m*K)], which can include the heat of phase trans-
formation Q = Q(x,¢) is a strength of internal source
[W/m?] (this can also be the phase transformations heat).

Heat of the phase transformation in the solid state
can be included in this part of the conductivity equa-
tion which represents internal sources (Q) (model with
the volumetric internal source), or in the effective heat
capacity (Cef) of this equation (model with the overall
heat capacity) [5, 21]. In this work the heat of phase
transformations was included in the effective heat capac-
ity assuming that the volumetric fraction of the nascent,
k-phase was a function dependent on the temperature
(e (%, 1) = ni (T (x,1))). When in the equation (3.1) the
heat source (Q) represents the heat of transformation
phase, then it is assumed that C,r = C = pc, whereas
when the transformation heat is contained in the effective
heat capacity then O = 0, and the effective heat capacity
equals [5]:
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where: T* and T* are temperatures of the start and the
end k -phase transformation, c is heat capacity [J/(kgK)],
p is density [kg/m?].

The conductivity equation (3.1) with suitable initial
and boundary conditions (Dirichlet, Neumann or New-

ton) is solved by FEM [21].

4. Model of mechanical phenomena

The equilibrium equation and constitutive relations
are used in rate form [5, 15, 22, 23].

Voo(x,N+F(x,1)=0, 6=06,

) 4.1
('r=Eo(é—éT”h—é"—é”’)+Eose, 1)

where: ¢ = (I(O'aﬁ) is stress tensor, F is the vector of

volumetric forces, E = E(E“ﬁw (1,5 nk)) is the tensor
of material constants dependent on the temperature and
the phase composition (3 77;), symbol (°) represents the

internal non-complete product of tensor, € = €° (8: ) isa

B
. . Tph\ -
tensor of elastic strains, e/ = g7Ph (sag”) is the tensor

of thermal strains and phase transformation (structural
strains), €’ = &’ (sfﬁ ) is the tensor of plastic strains,

whereas €7 = €'P (SZ;) are transformations plasticity.

In order to calculate plastic strains a model of
nonisothermal plastic flow with the Huber-Mis-
e s plasticity condition and with the isotropic strength-
ening is used, where the actual effective stress ¥ =
Y(T, D nk,s£f> depends on phase composition )’ i, (in

the temperature 7°) and effective strain sf - ie.:
P Y meet) = 101 Y m) + (1 Y moe?)

4.2)

where: Yy = Yo (T, i) is a yield points of materi-
al dependent on the temperature and the phase fraction
with no plastic strains, whereas Yy = Yy (T,Z nk,sf f)
is a surplus of the strain (resulting from the material
hardening).

The rate of changes of yield stress equals

Y (T, Z mi€l)) = kEl + HIT + Z H'i,  (43)

4065

p
ef
H}' = H; (T,Z nk,sf f) is the thermal softening modu-

lus, Hnyr = HUY, (T, > ks 85 f) is the modulus of structural
hardening [2, 3, 5].

In order to estimate transformation plasticity the
Leblond model [24] is used. The model is based
onthe Greenwood-Johnson mechanism. Trans-
formation plasticity is calculated as follows:

where: Ki; = 38‘1” f are volumetric structural strains when
the material is transformed from the initial phase ,,1”
into the i-phase, S is the deviator of stress tensor.

The equations are solved by means of the FEM [5,
21]. The system of equations used for numerical calcu-
lation can be presented as follows:

where: k = K(T,an,s ) is the hardening modulus,

0, for n; < 0.03,

_Klio_ily In (m;)n;, for n; > 0.03, 4.4)

K] {0} = (R} + (i) + {irr)) - i) . @)
where: K is the element stiffness matrix, U is the vector
of nodal displacement, £77" is the vector of nodal forces
resulting from thermal strains and structural strains, £¢
is the vector of nodal forces resulting from the value
change of Youn g’s modulus dependent on the tem-
perature, R is the vector of nodal forces resulting from
the boundary load and the inertial forces load, and t”"7 is
the vector of nodal forces n resulting from plastic strains
and transformation plasticity.

The rate vectors of loads in the brackets are calcu-
lated only once in the increment of the load, whereas
the vector t”’7 is modified in the iterative process. The
modified Newton-Raphson algorithm [25] was used.

The obtained model of the hardening process of steel
C80U consists of three related parts: thermal part, phase
transformations part and stress part. The model gives
the possibility to simulate the progressive and volumetric
hardening process for any geometries (task 2D, including
axisymetrical tasks). The in-house program was devel-
oped by implementing the model in the programming
environment Delphi.

5. Example of calculations

Numerical simulations of hardening of the elements
made of the carbon tool steel C80U were performed.
The thermophysical coefficients A and C, were assumed
as constants: 34 [W/(mK)], and 5432x10% [J/( m*K)].
These are the average values calculated on the basis of
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the data in the work [14]. Transformation heats of phase
transformation equal ([J/m3)) [26, 27]:

AH,_,p = 800.6 - 10°, AH,_,p = 314 - 10°,

5.1
AH, .,y = 628 - 10°. e-h

Young’s and tangential moduli (E and E') were
dependent on temperature, whereas the yield stress (Y)
was dependent on temperature and phase composition.
These values were approximated with the use of square
functions using the following assumptions based on the
work [4]: Young’s and tangential moduli 2x10° and
2x10* [MPal, yield points 150, 480, 950 and 320 [MPa]
for austenite, bainite, martensite and pearlite, respective-
ly, in the temperature 300 K. In the temperature 1700
K Young’s modulus and tangential modulus equalled
100 and 10 [MPa], respectively, whereas yield points
equalled 5 [MPa].

2} q,=a, @), -1.)

9, =am(T)@‘r _Tw)

SR

T
g, =0 (0. - 7..)

The axisimmetrical object with the following size
#30x60 mm (Fig. 6-7) underwent hardening simula-
tion. After heating it had an even temperature equalling
1100 K, and the output microstructure was austenite.
The cooling was modelled with the Newton condi-
tion. The temperature of the cooling medium equalled
T+ = 300 K. The dependence of the heat transfer coef-
ficient e = @e(T) (from the external surface ,,y”) on
the temperature was presented by means of square and
linear functions (Fig. 8).

Distributions of the fractions in the microstructure
after hardening of the object cooled in water and fluid
layer are presented in Figures 9-11.
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Exemplary residual stress distributions with and
without transformation plasticity: (¢'” = 0) and (&'” # 0)
respectively are presented in Figures 12—15.

6. Conclusions

The results of the verification of the phase transfor-
mations model are satisfactory and confirm the correct-
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Fig. 15. Residual stresses in central cross section (A-A, Fig. 7)
without and with considering transformations plasticity (cooling in
fluid layer)

ness of the designed model of phase transformations for
the carbon tool steel (Figs. 2 and 4). Having analysed
the results of the object hardening simulation after full
austenitizations it can be noticed that the hardened layer
is comparable to the one obtained after deep inductive
heating (Figs. 9 and 10) [1, 3].

However when cooling in the fluid layer is per-
formed more superficial deposition of the martensite is



obtained and a slightly bigger deposition of the bainite
in superficial layers can be observed.

Stress distributions after such hardening are advan-
tageous, both in case of cooling in water, as well as
cooling in the fluid layer (Figs. 12—15). More regular
distributions of the stresses are obtained after cooling
in the fluid layer (Figs. 13 and 15). However extreme
values of these stresses are comparable.

Inclusion of transformation plasticity has a signif-
icant influence on distributions and extreme values of
stresses in the simulation of the hardening. The depo-
sition of negative circumferential and axial strains is
more superficial, and their extreme values are lower
when these strains are taken into account (Figs. 14 and
15). It can be claimed that in the numerical simulation
of such hardening the fact that transformation plastic-
ity is included in the model of mechanical phenome-
na brings about significant changes in obtained results.
These changes encompass smoothing of strain fields and
decrease in their peaks. It appears to be highly right.
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