L. BLACHA*, S. GOLAK*, A. JAKOVICS**, A. TUCS**

KINETIC ANALYSIS OF ALUMINIUM EVAPORATION FROM THE Ti-6Al-7Nb ALLOY

ANALIZA KINETYCZNA PROCESU PAROWANIA ALUMINIUM ZE STOPU Ti-6Al-7Nb

In the present paper, kinetics of aluminium evaporation from the Ti-6Al-7Nb alloy during smelting by means of the VIM method at 5 to 1000 Pa has been discussed. To determine the liquid titanium meniscus area and the liquid titanium mean velocity for the experimental conditions of the study, a methodology based on the coupled model of the electromagnetic field and the hydrodynamic field of liquid metal was applied.

Keywords: kinetic analysis, evaporation, Ti-6Al-7Nb alloy, liquid titanium meniscus area, liquid titanium mean velocity

1. Introduction

Titanium alloys belong to a group of the most modern constructional and functional materials. They are light and designed for e.g. high-temperature application. A growing role and industrial importance of these materials can be clearly demonstrated by comparison to properties of other metal alloys. For instance, density of titanium alloys is equal to about 50% of steel density. Therefore, masses of various system elements made of these alloys can be by half smaller than those of the same steel element types. Strengths of titanium alloys, far higher than strengths of many alloy steels, highly promote these materials considering the strength to mass density ratio. Moreover, it should be noted that titanium alloys show better resistance to corrosion and oxidation compared to stainless steels, which also markedly improves their applicability. Titanium alloy smelting is mainly performed using VIM or VAR methods. However, during melting and casting of these materials, evaporation of their volatile matter can occur. For instance, during Ti-Al-V or Ti-Al-Nb smelting intense aluminium evaporation is observed [1-6]. Similarly, during Ti-Al-Mn alloy smelting, a component subjected to intense evaporation is manganese [7]. To prevent this, knowledge on the process kinetics is necessary as for various vacuum ranges in a furnace, the stage that controls its rate may change. In the present paper, kinetics of aluminium evaporation from the Ti-6Al-7Nb alloy during smelting by means of the VIM method at 5 to 1000 Pa has been discussed.

2. Research methodology

In Table 1, a chemical composition of Ti-6Al-7Nb alloy used for smelting experiments is presented.

<table>
<thead>
<tr>
<th>Alloy type</th>
<th>Basic alloy component fractions, %mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al</td>
</tr>
<tr>
<td>Ti-6Al-7Nb</td>
<td>5.5 – 6.5</td>
</tr>
</tbody>
</table>

The experiments were performed using a one-chamber VIM 20-50 vacuum induction furnace manufactured by SECO-WARWICK. At the beginning of each experiment, an alloy sample (about 1000 g) was placed in a graphite melting pot located in the induction coil of the furnace. After closing the furnace chamber, a precisely specified vacuum was generated using diffusive and Roots pumps. When the required vacuum level was reached, the melting pot was heated up to the set temperature and the metal bath was held at it for 600 sec. During the experiment, alloy samples were collected and subjected to a further chemical analysis. All experiments were performed at 5-1000 Pa and 1972-2023 K.

3. Results

The overall mass transfer coefficient in the analysed evaporation process is determined by the following equation [8]:
where:

\[
\frac{1}{k} = \frac{1}{\beta^l} + \frac{1}{\beta^g} + \frac{RT}{\phi \beta^l}
\]

(1)

where: \(\beta^l\) – mass transfer coefficient in the liquid phase,
\(\beta^g\) – mass transfer coefficient in the gaseous phase,
\(k_e\) – evaporation rate constant,
\(R\) – gas constant,
\(T\) – temperature,
\(M_m, \rho_m\) – respectively: molar mass and density of the basic alloy component, titanium,
\(p_i\), \(\gamma_i\) – respectively: aluminium vapour pressure over pure bath and its reactivity coefficient in liquid alloy.

In order to determine the overall mass transfer coefficient value for aluminium based on the experimental data, the following equation was applied:

\[
2.303 \log \frac{C^i_{Al}}{C^o_{Al}} = -k_{Al} \cdot \frac{F}{V}(t-t_o)
\]

(3)

where:
\(C^i_{Al}\) – aluminium concentration in the alloy after time \(t\),
\(C^o_{Al}\) – initial aluminium concentration,
\(F\) – evaporation area (the interface),
\(V\) – liquid metal volume,
\(t-t_o\) – process duration.

The equation (3) shows that a parameter that meaningfully affects the \(k_{Al}\) value is the evaporation area \(F\). In most cases, this parameter is assumed by Authors studying the evaporation kinetics of inductively stirred metal bath volatile matter to be the cross-section areas of the melting pot. This may cause a pronounced calculation error as under such hydrodynamic conditions, a meniscus is formed with a far larger surface than the inner cross-section of the melting pot. To determine the liquid titanium meniscus area for the experimental conditions of the study, a methodology based on the coupled model of the electromagnetic field and the hydrodynamic field of liquid metal was applied. A detailed description of the method can be found further in the paper. In Fig. 1, a shape of the titanium bath in the electromagnetic field is presented. In this case, the meniscus surface area was 0.0068 \(m^2\) and the cross-section area of the experimental melting pot was 0.0063 \(m^2\).

In Table 2, values of the experimental coefficient \(k_{Al}\), determined using the equation (3), are presented.

In order to determine the ratio of resistance related to mass transfer in liquid Ti-Al-Nb alloy to the overall evaporation process resistance, values of mass transfer coefficient, \(\beta^l_{Al}\), must be known. They were estimated using the Machlin equation which describes mass transfer in the inductively stirred liquid metal phase. The equation is as follows [9]:

\[
\beta^l_{Al} = \left(\frac{8D_{Al} \cdot v_m}{\pi \cdot r_m}\right)^{\frac{1}{2}}
\]

(4)

where:
\(v_m\) – near-surface velocity of inductively stirred liquid metal,
\(r_m\) – radius of the liquid metal surface (assumed to be the melting pot inner radius),
\(D_{Al}\) – Al diffusion coefficient in liquid alloy.

In the present paper, to determine a liquid titanium mean velocity, a mathematical model of liquid metal melting and heating in the induction furnace, considering the electromagnetic field and hydrodynamic field coupling, was applied.

The essential problem that impedes modelling of the process is the fact that the electromagnetic field affects the hydrodynamic field of liquid metal bath, changing its surface shape. The shape changes, affecting the electromagnetic field distribution, require calculations of the electromagnetic and hydrodynamic fields for each simulation step [12, 13] or at a frequency sufficient for maintaining the current field distribution by means of the mathematical extrapolation [14, 15].

In Fig. 2, the study simulation algorithm diagram is presented. The simulation begins with determination (by hydrostatic calculations) of the initial metal bath shape without the electromagnetic field based on the liquid titanium surface tension and the contact angle of the graphite melting pot wetted by liquid titanium. Then, the obtained liquid metal shape is
an input parameter for the electromagnetic model that ensures
determination of the distribution of electromagnetic force field
acting on liquid metal. A two-dimensional, axially symmetric
electromagnetic model was based on a commonly used equation
[16, 17] where the magnetic vector potential is applied:

\[\nabla \times \left(\frac{1}{\mu} \nabla \times A \right) + j \omega \sigma A = J_s \quad (6) \]

where: \(\mu, \sigma \) – magnetic permeability and conductivity of tita-
nium,
\(\omega \) – angular frequency,
\(J_s \) – source current density.

Based on the distribution of potential \(A \), determined using
the finite element method, distribution of magnetic induction
(\(B \)) (7), eddy current densities (\(J \)) (8) and the density of
electromagnetic force that acts on liquid metal (\(f_e \))(9) can be
determined:

\[B = \nabla \times A \quad (7) \]

\[J = j \omega \sigma A \quad (8) \]

\[f_e = \frac{1}{2} Re (J \times B^*) \quad (9) \]

The next step includes hydrodynamic calculations which, based on the VOF
method, allows for determination of a change in the bath surface shape that, again, is
the input parameter for the electromagnetic model. The model was based on the
solution (using the finite volume method) of the set of continuity and Navier-Stokes
equations for incompressible fluid:

\[\frac{\partial \rho}{\partial t} + \nabla (\rho \mathbf{v}) = 0 \quad (10) \]

\[\frac{\partial \alpha}{\partial t} + \nabla (\alpha \mathbf{v}) = 0 \quad (11) \]

where: \(\mathbf{v} \) – velocity,
\(n_{eff} \) – titanium effective viscosity including turbulent vis-
cosity determined using the popular k-epsilon model [18, 19],
\(\rho_m \) – titanium density,
\(\alpha \) – titanium volume fraction.

To maintain calculation stability, the simulation cycle was
performed within a relatively short timeframe of \(10^{-4} \) sec. A
condition of simulation completion was lack of changes in
liquid metal surface shape and its volumetric flow field. In
Fig. 3, a sample, calculated liquid titanium velocity field for
\(T=2023 \text{ K} \) is presented. Mean near-surface velocities, deter-
dined using the above model, were 0.135 to 0.149 ms\(^{-1}\).

Estimated values of coefficients \(k_{Al}, k'_{Al}, \beta_{Al}^e \)

<table>
<thead>
<tr>
<th>Test no.</th>
<th>Temperature, K</th>
<th>Pressure, Pa</th>
<th>Final Al concentration %mass</th>
<th>Coefficient (k_{Al}, \text{m}^{-1})</th>
<th>Coefficient (k'_{Al}, \text{m}^{-1})</th>
<th>Coefficient (\beta_{Al}^e, \text{m}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1973</td>
<td>1000</td>
<td>3.94</td>
<td>2.04 \times 10^{-5}</td>
<td>3.02 \times 10^{-4}</td>
<td>5.43 \times 10^{-5}</td>
</tr>
<tr>
<td>2</td>
<td>1973</td>
<td>100</td>
<td>3.77</td>
<td>2.15 \times 10^{-5}</td>
<td>3.02 \times 10^{-4}</td>
<td>5.43 \times 10^{-5}</td>
</tr>
<tr>
<td>3</td>
<td>1973</td>
<td>50</td>
<td>3.67</td>
<td>2.29 \times 10^{-5}</td>
<td>3.02 \times 10^{-4}</td>
<td>5.43 \times 10^{-5}</td>
</tr>
<tr>
<td>4</td>
<td>1973</td>
<td>10</td>
<td>3.66</td>
<td>2.33 \times 10^{-5}</td>
<td>3.02 \times 10^{-4}</td>
<td>5.43 \times 10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>1973</td>
<td>5</td>
<td>3.34</td>
<td>2.49 \times 10^{-5}</td>
<td>3.02 \times 10^{-4}</td>
<td>5.43 \times 10^{-5}</td>
</tr>
<tr>
<td>6</td>
<td>1998</td>
<td>1000</td>
<td>3.88</td>
<td>2.24 \times 10^{-5}</td>
<td>3.47 \times 10^{-4}</td>
<td>6.85 \times 10^{-5}</td>
</tr>
<tr>
<td>7</td>
<td>1998</td>
<td>100</td>
<td>3.69</td>
<td>2.32 \times 10^{-5}</td>
<td>3.47 \times 10^{-4}</td>
<td>6.85 \times 10^{-5}</td>
</tr>
<tr>
<td>8</td>
<td>1998</td>
<td>50</td>
<td>3.63</td>
<td>2.40 \times 10^{-5}</td>
<td>3.47 \times 10^{-4}</td>
<td>6.85 \times 10^{-5}</td>
</tr>
<tr>
<td>9</td>
<td>1998</td>
<td>10</td>
<td>3.56</td>
<td>2.57 \times 10^{-5}</td>
<td>3.47 \times 10^{-4}</td>
<td>6.85 \times 10^{-5}</td>
</tr>
<tr>
<td>10</td>
<td>1998</td>
<td>5</td>
<td>3.30</td>
<td>2.86 \times 10^{-5}</td>
<td>3.47 \times 10^{-4}</td>
<td>6.85 \times 10^{-5}</td>
</tr>
<tr>
<td>11</td>
<td>2023</td>
<td>1000</td>
<td>3.86</td>
<td>2.34 \times 10^{-5}</td>
<td>3.96 \times 10^{-4}</td>
<td>8.59 \times 10^{-5}</td>
</tr>
<tr>
<td>12</td>
<td>2023</td>
<td>100</td>
<td>3.62</td>
<td>2.42 \times 10^{-5}</td>
<td>3.96 \times 10^{-4}</td>
<td>8.59 \times 10^{-5}</td>
</tr>
<tr>
<td>13</td>
<td>2023</td>
<td>50</td>
<td>3.57</td>
<td>2.54 \times 10^{-5}</td>
<td>3.96 \times 10^{-4}</td>
<td>8.59 \times 10^{-5}</td>
</tr>
<tr>
<td>14</td>
<td>2023</td>
<td>10</td>
<td>3.48</td>
<td>2.79 \times 10^{-5}</td>
<td>3.96 \times 10^{-4}</td>
<td>8.59 \times 10^{-5}</td>
</tr>
<tr>
<td>15</td>
<td>2023</td>
<td>5</td>
<td>3.19</td>
<td>3.00 \times 10^{-5}</td>
<td>3.96 \times 10^{-4}</td>
<td>8.59 \times 10^{-5}</td>
</tr>
</tbody>
</table>
In order to determine the aluminium diffusion coefficient in the liquid phase, the equation [20] was applied:

\[
D_{Al} = 10^{-8} \exp \left[\frac{250000}{R} \left(\frac{1}{1925} - \frac{1}{T} \right) \right]
\]

(13)

Values of aluminium mass transfer coefficient in the liquid phase, determined using the equation (3), are presented in Table 2.

To determine the ratio of resistance related to the act of evaporating on the metal bath surface to the overall resistance of the process, the \(k^e \) coefficient must be known. In this case, values estimated by the paper Authors using the Langmuir-Knudsen equation [6] were applied.

In Table 2, estimated values of substitutional evaporation rate constant, \(k^e' \), determined using the following equation, are also presented:

\[
k^e' = k^e \cdot \phi
\]

(14)

For calculations, the coefficient of aluminium activity (\(\gamma_{Al} \)) in the alloy was assumed to be 0.09-0.1. The values of coefficient \(k^{ie} \) allowed for estimation of the ratio of resistance related to the act of evaporating on the metal bath surface to the overall resistance of the process.

4. Discussion on results

Based on the experimental results, it can be demonstrated that decrease in the system working pressure is accompanied by aluminium loss increase. For the tests performed at 5 Pa, the final fraction of this metal in the alloy dropped to below 4% mass with the initial fraction of 5.5% mass. At the same time, the aluminium overall mass transfer coefficient increased from 2.03 \(10^{-5} \) to 3.46 \(10^{-5} \) m s\(^{-1} \), which is illustrated by the data in Fig. 4. In Fig. 5, sample \(k_{Al}, \beta_{Al}, k^e_{Al} \) values versus temperature are presented. For all the pressure values, they are ordered as follows:

\[
k_{Al} < \beta_{Al} < k^e_{Al}
\]

(15)

The obtained \(k_{Al}, k^e_{Al} \) and \(\beta_{Al} \) values were used for specifying the stages that determine the investigated process. The ratio of mass transfer resistance in the liquid phase was determined using the following equation:

\[
U_{l} = \frac{1}{\beta_{Al}} \cdot 100\%
\]

(16)

and, analogically, the resistance related to the act of evaporating is:

\[
U_{e} = \frac{1}{k^e_{Al}} \cdot 100\%
\]

(17)

The performed analysis revealed that for the entire pressure range, the ratio of resistance related to mass transfer in the liquid phase did not exceed 9%. The ratio of resistance related to the act of evaporating was as follows: 27 to 45% (Fig. 6), while the ratio of resistance related to mass transfer in the gaseous phase was over 45% of the overall process resistance (Fig. 7).
from the Ti-6Al-7Nb alloy, it has been demonstrated that:

- The summary ratio of resistance related to the act of evaporating and mass transfer in the gaseous phase to the overall process resistance was 90-95% (Fig. 8). This means that the two processes determine the rate of aluminium evaporation from Ti-6Al-7Nb.

Fig. 7. Ratio of resistance related to mass transfer in the gaseous phase to the overall process resistance, depending on pressure

5. Conclusion

Based on the investigations on aluminium evaporation from the Ti-6Al-7Nb alloy, it has been demonstrated that:

- The evaporation rate is determined by both the act of evaporating and the mass transfer in the gaseous phase.
- The summary ratio of process resistance related to these stages is about 90-95%.
- The ratio of resistance related to mass transfer in the liquid phase to the overall process resistance is lower than 10%.
- Thus, a factor that ensures reduction in disadvantageous aluminium evaporation from the investigated alloy is conducting the process at higher working pressures.

REFERENCES