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USE OF GENETIC ALGORITHMS FOR OPTIMISATION OF MATERIALS PROPERTIES

ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO OTYMALIZACJI WŁASNOŚCI MATERIAŁÓW

The genetic algorithm method was applied in order to decompose the texture function and to optimize elastic constants
by an approprite choice of texture function. These example applications of genetic algorithm method show its potential in the
field of material engineering.

Metodę algorytmów genetycznych zastosowano do analizy tekstury oraz do optymalizacji stałych sprężystych poprzez
dobór odpowiedniej tekstury. Te przykładowe zastosowania metody pokazują jej potencjalne możliwości w dziedzinie inżynierii
materiałowej.

1. Introduction

The genetic algorithms method (GAM) is a modern
computer technique based on some ideas taken from the
evolution theory [1,2]. GAM is particularly useful for
a study of problems being not completely determined.
These are, e.g., problems having a few but not very dif-
ferent solutions or problems without an exact solution.
The last situation may occur if it is enough to find a
good solution but not necessarily the best one. In GAM
approach it is not necessary to know a priori a general
scheme of solving a given problem; however, it is impor-
tant to have a procedure estimating the quality of a solu-
tion. This procedure is used to eliminate some solutions
and to accept another. In last years GAM was applied
with success in different areas of science, e.g., in: sociol-
ogy, construction engineering, artificial intelligence and
many others. The present authors have already used it in
the field of texture analysis [3-5]. This work reports the
application of GAM for optimisation of elastic constants
of a polycrystalline material. This is obtained by finding
a respective crystallographic texture which leads to a
given property.

2. Genetic algorithm method

In GAM it is not necessary to know a priori a general
scheme of solution of a given problem but it is important

to have a procedure (accommodation function) estimat-
ing the quality of a solution. Each possible solution I is
called individual and is defined as a string of coefficients
(coding procedure), e.g:
I(p1, . . . , p2, p3, . . . , pM).
The algorithm starts with initial, random set of solutions:
I1, I2, . . . IN :
I1(p11, . . . , p12, p13, . . . , p2M)
I2(p21, . . . , p22, p23, . . . , p1M)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IN (pN1, . . . , pN2, pN3, . . . , pNM)

The set of solutions is called population P. Consecutive
iterations are done next; in each iteration three basic
numerical operations are performed on solutions: repro-
duction, mutation and crossover [1,2].
– During reproduction each solution In from the pop-

ulation Pk gets some number of copies, proportion-
al to its accommodation factor. The solutions with
accommodation factor below a mean value for the
population are removed.

– During crossover some (randomly chosen) pairs of
solutions are retained. Next, some parts of their co-
efficient strings are cut in the same point and are
interchanged. In the example below, the crossover
for the solutions Ix and Iy is shown. The parts of
coefficient strings (with indices from 1 to r) were
cut and interchanged.
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Ix(px1, . . . , pxr , px(r+1), . . . , pxM) Ix(py1, . . . , pyr , px(r+1), . . . , pxM
Iy(py1, . . . , pyr , py(r+1), . . . , pyM) Iy(px1, . . . , pxr , py(r+1), . . . , pyM

Solutions Ix and Iy before crossover Solutions Ix and Iy after crossover

– During mutation some coefficients in some solutions
are randomly changed,

After carrying out these operations on the population, Pk
one gets the population Pk+1 (starting population for the
next iteration). The quality of the best solutions increas-
es systematically with the number of iterations (popula-
tions). Calculations are stopped when the quality of the
best solution is satisfactory.

3. Use of GAM in texture decomposition

The crystallographic texture is one of basic characteris-
tics of materials. Using texture, it is possible to evaluate
a macroscopic property of a material if the same quantity
(and its anisotropy) is known at the crystal scale. A strict
quantitative representation of texture is given by the ori-
entation distribution function (ODF). This function gives
a unique characteristic of the distribution of crystal ori-
entations. On the other hand it enables the calculation of
average physical properties for a polycrystalline material.
ODF is generally calculated from a set of experimen-
tal pole figures, determined by X-ray or neutron diffrac-
tion. There exist a number of methods for this calcula-
tion (see e.g., 6-12). Having already determined ODF,
it is practical in many cases to present it as a sum of
main texture components, i.e., as a sum of Gauss type
functions centred on selected ideal orientations. Such
the decomposition enables a quick texture analysis or a
simplified calculation of a sample property. This decom-
position can be done using classical numerical methods
(e.g., Minuit algorithm) but the calculation time becomes
very long with increasing number of used texture com-
ponents. Therefore, the method proposed in this work
is based on the texture decomposition into Gauss type
model functions [13], where their parameters and weight
coefficients are found by GAM.
GAM can be also used to find optimal textures for select-
ed material properties. Calculation of elastic constants
(EC) or diffraction elastic constants (DEC) is a good
example of ODF application to find macroscopic prop-
erties from crystalline ones. These constants are used
in the interpretation of internal stress measurements by
diffraction techniques. Two elements are necessary to
calculate EC or DEC: elastic constants of single crystal
(Sijkl or Cijkl) and numerical values of ODF. Generally,
ODF is represented by its values in a set of points (form-
ing a regular grid) in the Euler space. Each point in the

Euler space defines the crystal orientation g with respect
to the sample reference frame and it is expressed by ϕ1,
φ, ϕ2 angles [6]. Hence, the crystal orientation can be
characterized directly by three Euler angles g = {ϕ1, φ ,
ϕ2} or by the orientation matrix g calculated using these
angles [6]. In the most frequent case of cubic crystal
symmetry and orthorhombic sample symmetry, ϕ1, φ,
ϕ2 vary in [0◦, 90◦] range, and ∆ϕ1 = ∆φ = ∆ϕ2 = 5◦
steps are used for discretization; consequently ODF is
presented by 19*19*19=6859 values. Stocking a huge
amount of ODFs can create the computer memory prob-
lems. This difficulty is avoided if ODF is decomposed
into Gauss peaks (typically of the order of ten); only
a few parameters have to be recorded to define a peak
(location, width and volume). This provides a tool of
simplified (but sufficient for many practical purposes)
texture analysis. Another advantage coming from the
proposed analysis is the possibility of simplified DECs
calculation using only a few texture components (ideal
orientations). In this approach a property of the textured
material can be approached as an average property for a
few single crystals with different orientations.
The basic idea of the proposed ODF representation is
to express it as a sum of Gauss-shaped functions. Spe-
cial standard functions of this type, adapted to texture
analysis and defined by Matthies [13], were used. These
standard functions are defined by the following expres-
sion:

f(S,$) = N(S)exp(S cos$), (1)

where $ = $(go, g) is the angular distance between
the orientations go and g (go is the orientation of the
peak centre and g is any orientation; 0 6 $ 6 π)
and S is the parameter connected with the peak width:
S=ln2/[2sin2(b/4)] with b6 2π. The factor N(S) is the
normalization constant (N(S)=[Io(S)-I1(S)]−1, where Ik
are modified Bessel functions [13]); it may be shown that
for reasonably narrow Gauss-shaped functions ($ << π),
an approximated formula can be used: N(S)≈ e−S

√
8πS3.

Each standard function is normalized:

∫
G

f (S, $)dg = 8π2, (2)

where G denotes the orientation space.
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Let us note that each standard function is defined by b
and g0. Our goal is to decompose an ODF (we denote it
as F(g)) into a sum of standard functions:

F(g) =
M∑

m=1

am fm(bm, g0(m)), (3)

where M is the total number of used standard functions
and am are weight coefficients (06am 61). The standard
functions are normalized (Eq.2), hence the weight coef-
ficients give also the volume fractions of grains whose
orientations are covered by a given standard function.
Each standard function, with its weight coefficient am, is
located at a specific orientation g0(m) (in texture nomen-
clature it is called an ideal orientation) and is defined by
the half-width bm, which in turn defines its Sm parameter.

The condition which has to be fulfilled during optimisa-
tion (accommodation function) is that the sum of con-
sidered standard functions has to be as close as possible
to the analysed ODF (χ2 test is used).
Each solution (In) contains the share coefficients (am),
widths (bm) and three Euler angles defining the centres
of the Gauss functions: g0(m) = g0 (ϕ1(m), Φm, ϕ2(m)) :

In (a1, b1,ϕ1(1),φ1,ϕ2(1),

a2, b2,ϕ1(2),φ2,ϕ2(2), ....., aM, bM,ϕ1(M),ΦM,ϕ2(M)).
(4)

The example result of texture decomposition using this
type of individuals is shown in Fig 1. The experimental
texture function (Fig. 1a) was decomposed into sum of
five standard functions (Eq. 3) and this sum is presented
in Fig. 1b.

a b

Fig. 1. Reproduction of the cold rolled steel texture: a) experimental texture, b) texture reproduced by GAM using individuals (Eq. 4)
containing M=5 standard functions. ϕ2=const sections are shown

The convergence of calculations, i.e. the variation of the
accommodation factor vs. the number of generations is
shown in Fig. 2. We note that GAM procedure is quick-
ly convergent and after approximately hundred genera-
tions one obtains a satisfactory solution. It should be
noted that in the case of M=5 used standard functions,
GAM is 3-4 times faster than the classical Minuit al-
gorithm. Moreover, this difference grows rapidly (in fa-
vor of GAM) with increasing number of Gauss standard
functions.

Fig. 2. Accommodation factor vs. number of generations
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4. Optimization of macroscopic elastic constants

Another application of GAM, considered in this work,
concerns the research of optimal elastic constants of
a material. Elastic properties of crystal are described
by two tensors: Sijkl (compliance) and Cijkl (stiffness)
[14]. Calculation of the macroscopic average (i.e., sam-
ple property) will be presented for Sijkl tensor. It involves
two steps:
a) Single crystal tensor Smnop is transformed to the sam-
ple co-ordinates system:

S′ijkl(g) = gT
imgT

jng
T
kog

T
lpSmnop (5)

where g if the orientation matrix defining the crystal lat-
tice orientation of a grain, generally expressed by three
Euler angles: ϕ1, φ, ϕ2. This matrix relates the sample
reference frame KA to the crystal one KB, i.e.: KB=g
KA, and gT is the transposed matrix of g. Moreover, the
standard repeated index summation convention is applied
in Eqs. 5 and 6. The transformed elastic tensor (S′ijkl(g))
is averaged next to obtain the mean macroscopic tensor
SM

ijkl’. The texture function, f(g), is the weighting param-
eter [6]:

SM
i jkl′ =

∫
Ω

S′i jkl′(g) f (g)dg =
∫
Ω

gT
imgT

jngT
kogT

lpSmnop f (g)dg

(6)
and Ω is the basic volume of the Euler angles space.
An optimal texture is often searched to produce a ma-
terial with required properties. Let us perform a simple
test of the presented method. The proposed example is
to find a texture, which assures a minimal Young mod-
ulus (E) of the material along the x1 sample axis. This
condition imposes the maximum value of SM

11′ = SM
1111′

(because E = 1 / SM
1111′).

Three independent constants (S11, S12, S44) define elastic
properties of cubic crystals [14] (standard matrix nota-
tion Snm will be used for Sijkl in the following text). The
tensor transformation from crystal co-ordinates system
to the sample one gives:

SM
11′=S11+{S44−2(S11−S12)}(gT

11
2gT

12
2+gT

12
2gT

13
2+gT

13
2gT

11
2)

(7)
The following Sij values for low carbon steel were
used in the calculations: S11=7,5682·10−6 MPa-1, S12=
-2.78·10−6 MPa-1 and S44= 8,5911·10−6 MPa-1 [15].
Hence Eq.7, after substituting the above constants, takes
form:

SM
11′ = 7.5682 − 12.1053(gT

11
2gT

12
2 + gT

12
2gT

13
2 + gT

13
2gT

11
2)

(7a)
with SM

11
′ expressed in MPa.

The calculation of optimal elastic properties was done
using the formula for texture function given by Eq. 3
(with M=5). The orthorhombic sample symmetry and
cubic crystal symmetry were taken into account in the
calculations. The optimal texture (ODF), giving the min-
imal Young modulus (which is also the accommodation
function in this case), found by GAM is shown in Fig.
3a. A minimal value of Young modulus corresponds to
a maximal value of SM

11
′, and according to Eq. 7a, it is

reached for a zero value of the following factor:

X = gT
11

2gT
12

2 + gT
12

2gT
13

2 + gT
13

2gT
11

2. (8)

The texture minimizing Young modulus (Fig. 3a), found
by GAM analysis, is the cube texture (001)[100], for
which X=0.
The same procedure was used to find a texture leading to
the maximal Young modulus and it is shown in Fig. 3b.
A simple analytical calculation shows that in this case
X should take a maximal value X=1/3, which is fulfilled
for {hkl}<111> texture components. The texture found
by the GAM procedure (Fig.3b) is the superposition of
(112)[1̄1̄1] (i.e., ϕ1 = 900, φ = 350, ϕ2 = 450) and
of the orientation not far from the (110)[1̄1̄1] one (i.e.,
φ1 = 350, φ = 900, φ2 = 450) components.
The above example confirms that GAM procedure works
correctly (in the sense of numerical solutions).
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a b

Fig. 3. Textures found by GAM leading to: a) minimal Young modulus, b) maximal Young modulus (b). ϕ2 = 450 section is shown

5. Conclusions

GAM can be used to find material parameters which
lead to optimal properties. It furnishes good results (but
not necessarily the best one) verifying some imposed
criteria. In each practical case a reasonable compromise
between the calculation time and the solution quality has
to be found. In the present work the test example of op-
timisation concerns the Young modulus, but the method
is quite general and it can be applied to other physical
properties.
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