Dyfrakcja elektronów wstecznie rozproszonych Analiza punktowa

EBSD - Electron Backscatter Diffraction

- **EBSP Electron Backscatter Pattern**
- **BKP Backscatter Kikuchi Pattern**

Obrazowanie orientacji COM - Crystal Orientation Mapping ACOM - Automatic Crystal Orientation Mapping OIM® - Orientation Imaging Microscopy

(TexSEM Laboratories trademark)

Analiza punktowa

Skanowanie wiązką elektronową

Pierwszy obraz linii dyfrakcyjnych uzyskany przez Kikuchiego w 1928 roku z kryształu kalcytu CaCO₃

Shoji Nishikawa and Seishi Kikuchi "*The Diffraction of Cathode Rays by Calcite"* Proc. Imperial Academy (of Japan) 4 (1928) 475-477

Punktowe źródło elektronów

Elektrony wstecznie rozproszone ulegają dyfrakcji tworząc dla każdej płaszczyzny krystalograficznej stożki dyfrakcyjne o dużym kącie rozwarcia (tzw. stożki Kossela)

Przecięcie tych stożków z ekranem luminoforu – układ równoległych linii (pasm) zwanych liniami (pasmami) Kikuchiego unikalny dla danej orientacji krystalitu

EBSD z krystalitu FeTiO₃

1 utworzenie źródła elektronów w warstwie podpowierzchniowej kryształu – elektrony rozpraszane są we wszystkich kierunkach. Część ulega dyfrakcji zgodnie z prawem Bragga:

 $\lambda = 2\mathbf{d}_{\mathrm{hkl}} \sin \theta$

2 Kąt Bragga jest mały (1° dla 15 kV) – stożki są duże – linie przecięcia z ekranem prawie proste; odległość pomiędzy liniami proporcjonalna do tan(θ) a linia środkowa pomiędzy przecięciami stożków jest <u>rzutem gnomonicznym</u> płaszczyzny krystalograficznej uginającej elektrony

Technika badawcza bardzo czuła powierzchniowo

Dodatkowy detektor elektronów rozproszonych "do przodu" (forward scattered) umieszczony na kamerze CCD służy do rejestracji obszarów, z których rejestrowane są dyfrakcje

Przestrzenna zdolność rozdzielcza EBSD

70.53

Zależy:

• od rodzaju

materiału

od źródła

(FEG z

elektronów

termoemisja!)

Zależność zdolności rozdzielczej od napięcia przyspieszającego dla Al, Cu i Ag

Cu, ECAP step size 200 nm FEI FEGSEM

Schemat systemu EBSD

- 1 kolumna elektronooptyczna
- 2 próbka
- 3 kamera CCD
- 4 sterownik kamery
- 5 komputer sterujący wiązką oraz
 - przeprowadzający analizę obrazu
- 6 obraz dyfrakcyjny

Jak otrzymać mapę orientacji?

TO NIE JEST TYLKO KOLOROWA MAPA!!!

Akwizycja – odejmowanie tła

Dyfrakcja wyjściowa

Dzielenie przez tło

Detekcja linii na dyfrakcji – transformata Hougha P.C.V. Hough "Method and means for recognising complex pattern" US Patent 3 069 654, 1962

- Przez pojedynczy pixel na układzie X-Y można przeprowadzić nieskończoną liczbę linii
- Linia ta może być opisana przez parametry Hougha "ρ" i "θ", gdzie "ρ" reprezentuje odległość linii od początku układu a "θ" – kąt pochylenia linii
- Punkt w przestrzeni obrazu jest przedstawiony jest jako sinusoida w przestrzeni Hougha

- Rozważmy 4 piksele leżące na jednej linii. Dla każdego piksela obliczamy wszystkie możliwe wartości " ρ " dla kąta " θ " w zakresie od 0° do 180° zgodnie z równaniem: $\rho = x\cos\theta + y\sin\theta$.
- Otrzymujemy 4 krzywe sinusoidalne przecinające się w punkcie o koordynatach "ρ" i "θ", odpowiadających koordynatom "ρ" i "θ" dla linii w układzie X-Y.
- Linia w układzie X-Y przekształca się w punkt w układzie ρ - θ (transformata Hougha).

Transformata Hougha

Detekcja linii - transformata Hougha

100

[211]

[210]

[221

Detekcja linii za pomocą transformaty Hougha

Dyfrakcja z ceramiki mulitowej (układ ortorombowy) (3Al₂O₃ 2SiO₂), 10 kV

Rozwiązanie dyfrakcji nałożone na realną dyfrakcję orientacja {370}<7-34>

Symulacja orientacji krystalitu mullitu

Symulacja dyfrakcji – pasma Kikuchiego o intensywności większej niż 10% najbardziej intensywnych pasm

EBSD – analiza dyfrakcji

Identyfikacja odpowiednich wskaźników *hkl* przez porównanie wartości kątów pomiędzy dwoma pasmami z wartościami kątów z Tablic

β	
	e

Angle	(hkl) ₁	(hkl) ₂	Angle	(hkl) ₁	(hkl) ₂
25.2	200	311	64.8	220	311
29.5	111	311	70.5	111	111
31.5	220	311	72.5	200	131
35.1	311	311	80.0	111	311
35.3	111	220	84.8	311	131
45.0	200	220	90.0	111	220
50.5	311	311	90.0	200	020
54.7	111	200	90.0	200	022
58.5	111	311	90.0	220	113
60.0	220	202	90.0	220	220
63.0	311	131			

Zestaw możliwych rozwiązań dla 3 pasm Kikuchiego otrzymamy poprzez porównanie wartości zmierzonych kątów na realnej dyfrakcji z wartościami z Tablic

Angle	(hkl)1	(hkl)2
25.2	200	311
29.5	111	311
31.5	220	311
35.1	311	31-1
35.3	111	220
45.0	200	220
50.5	311	3-1-1
58.5	111	31-1
60.0	220	202
63.0	311	13-1
64.8	220	3-11
70.5	111	11-1
80.0	111	3-1-1
84.8	311	1-31
90.0	111	2-20
90.0	200	020
90.0	200	022
90.0	220	1-13
90.0	220	2-20

 Identify the <i>hkl</i> of the high contrast bands (bands likely to be detected by the Hough transform). 	200 111 220 311	
2) Determine all of the symmetrically equivalent <i>hkl</i> 's.	200, 020, 002 111, 11 T, 1 T 1, T 11 220, 220, 202, 202, 022, 022 311, 311, 3 T 1, 31 T, 131, T 31, 13 T, 113, T 13, 1 T 3, 11 3	
3) Form all possible pairs.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4) Calculate the angles between the plane pairs.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{1} = 54.7^{\circ} \cdots$ $\overline{1} = 54.7^{\circ} \cdots$ $11 = 90^{\circ} \cdots$
5) Throw out duplicates and sort.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{1} = 70.5^{\circ}$ $1 = 72.5^{\circ}$ $1 = 80^{\circ}$

Dla układu 3 pasm Kikuchiego porównanie wartości kątów pomiędzy płaszczyznami z realnej dyfrakcji i wartościami kątów z Tablic daje **3 możliwe rozwiązania** Które jest właściwe?

$$\#triplets = \frac{n!}{(n-3)! \cdot 3!}$$

For a given number of bands, *n*, used for pattern indexing, the number of band triplets is determined by this formula.

Typically 7 to 9 detected bands are used for automatic indexing.

n	# triplets
3	1
4	4
5	10
6	20
7	35
8	56
9	84

Dla zestawu 5 pasm – możliwe 10 kombinacji trójkowych Dla 10 kombinacji trójkowych - tylko rozwiązanie V_1 (10 głosów). Rozwiązanie V_2 (1 głos) i rozwiązanie V_3 (1 głos)

C-SEM (HV)

Kilka uwag praktycznych

próbka

(1)

oś stożka Kossela

(2)

płaszczyzna krystalograficzna

Ι

Wpływ napięcia przyspieszającego (zależność w od λ)

EBSD z Si przy 10 kV i 30 kV
V (kV)	λ (nm)		
20	0.00859		
30	0.00698		
40	0.00602		
50	0.00536		
60	0.00487		
70	0.00448		
80	0.00418		
90	0.00392		
100	0.00370		
200	0.00251		
300	0.00197		
400	0.00164		
500	0.00142		
600	0.00126		
700	0.00113		
800	0.00103		
900	0.00094		
1000	0.00087		
2000	0.00050		
4000	0.00028		

Szerokość pasm Kikuchiego jest odwrotnie proporcjonalna do odległości międzypłaszczyznowej "d"

(zależność "w" od "d")

Natężenie pasma Kikuchiego pochodzącego od danej płaszczyzny *hkl*:

$$\mathbf{I}_{hkl} = \left[\sum_{i} f_{i}(\Theta) \cos 2\pi (hx_{i} + ky_{i} + lz_{i})\right]^{2} + \left[\sum_{i} f_{i}(\Theta) \sin 2\pi (hx_{i} + ky_{i} + lz_{i})\right]^{2}$$

gdzie: $f_i(\theta)$ atomowy czynnik rozpraszania dla elektronów, ($x_i y_i z_i$) cząstkowe koordynaty dla atomu *i* w komórce elementarnej.

Zarejestrowaną dyfrakcję porównujemy z dyfrakcją wyliczoną na podstawie powyższego równania, uważając aby uwzględniać tylko te płaszczyzny które uginają elektrony, gdyż tylko one biorą udział biorą udział w tworzeniu dyfrakcji.

Czynnik strukturalny

Umożliwia przewidywanie obecności lub nieobecności refleksów dyfrakcyjnych od różnych płaszczyzn krystalograficznych a także proporcje ich intensywności. Opisywany przez niego efekt spowodowany jest interferencją fal cząstkowych ugiętych na poszczególnych atomach komórki elementarnej.

$$\mathbf{A}_{\mathbf{hkl}} \propto \mathbf{F}_{\mathbf{hkl}} \mathbf{A}_{\mathbf{0}}$$

 A_{hkl} – amplituda wiązki elektronowej ugiętej na płaszczyźnie *hkl* A_0 – amplituda wiązki elektronowej padającej

 F_{hkl} – czynnik strukturalny dla płaszczyzny *hkl*

$$F_{hkl} = f_1(\theta) \exp[-2\pi i(hu_1 + kv_1 + lw_1)]$$

+ $f_2(\theta) + \exp[-2\pi i(hu_2 + kv_2 + lw_2)]$
+ ...
+ $f_n(\theta) \exp[-2\pi i(hu_n + kv_n + lw_n)]$

gdzie:

Z – liczba atomowa, f_x – czynnik atomowy na rozpraszanie promieniowania rentgenowskiego, $Z-f_x$ – rozpraszanie elektronu na elektronach powłok $\lambda/\sin\theta$ – opisuje rozpraszanie Rutherforda elektronu na

Al

(L.REIMER)

a

jądrze atomowym

Ta

$$\mathbf{F}_{hkl} = \sum_{j=1}^{n} \mathbf{f}_{j}(\boldsymbol{\theta}) \exp[-2\pi i(\mathbf{hu}_{j} + \mathbf{kv}_{j} + \mathbf{lw}_{j})]$$

Dla n liczby atomów w komórce elementarnej

W pewnych przypadkach płaszczyzny nie uginają elektronów – dyfrakcja nie zachodzi – *forbidden reflections*

Czynnik strukturalny

100 dla fcc (Au) – atomy Au rozmieszczone są na narożach komórki elementarnej i na środkach płaszczyzn. n = 4 (bo cztery atomy tworzą komórkę elementarną zajmując pozycje: [0,0,0], [0,1/2,1/2], [1/2,0,1/2], [1/2,1/2,0])

$$F_{hkl} = f_{1}(\theta) \begin{pmatrix} \exp[-2\pi i(1\cdot 0 + 0\cdot 0 + 0\cdot 0)] \\ + \exp[-2\pi i(1\cdot 0 + 0\cdot \frac{1}{2} + 0\cdot \frac{1}{2})] \\ + \exp[-2\pi i(1\cdot \frac{1}{2} + 0\cdot 0 + 0\cdot \frac{1}{2})] \\ + \exp[-2\pi i(1\cdot \frac{1}{2} + 0\cdot \frac{1}{2} + 0\cdot 0)] \end{pmatrix} = \begin{pmatrix} \exp[0] \\ + \exp[0] \\ + \exp[-\pi i] \\ + \exp[-\pi i] \end{pmatrix} = 0$$

$$F_{hkl} = \sum_{j=1}^{n} f_{i}(\Theta) \cos 2\pi (hx_{n} + ky_{n} + lz_{n}) - i\sum_{j=1}^{n} f_{i}(\Theta) \sin 2\pi (hx_{n} + ky_{n} + lz_{n})$$

x, y, z – położenia atomu n

hkl-wskaźniki Millerowskie płaszczyzn

http://www.ftj.agh.edu.pl/~Wierzbanowski/Dyfrakcja.pdf

$\mathbf{F}_{\mathbf{hkl}}$ dla FCC

warunkiem wystąpienia refleksu w sieci FCC jest, aby

wskaźniki "h k l" były tego samego rodzaju (parzyste lub nieparzyste),

wtedy suma dwóch wskaźników będzie zawsze parzysta (w tym przypadku F_{hkl} = 4f), dlatego eliminujemy płaszczyzny: 100, 110, 210, 211...., a zostają płaszczyzny: 111, 200, 220, 311, 222, 331, 422, 333, 440, 531, 442, 533

Reflectors	No.	d-spacing, Å	Intensity %
{111}	4	2.338	100.0
{200}	3	2.025	69.4
{220}	6	1.432	27.6
{311}	12	1.221	18.2
{222}	4	1.169	16.2
{331}	12	0.929	9.0
{422}	12	0.827	6.6

Pattern Centre – dlaczego pochylamy próbkę o 70°?

Pattern Centre (PC) Punkt na ekranie luminoforu leżący najbliżej źródła elektronów generującego dyfrakcje

Gdy zmienia się WD (*Working Distance*) ulega zmianie położenie PC (*Pattern Centre*)

Zmiana położenia PC (*Pattern Centre*) wraz ze zmianą WD (*Working Distance*) Austenit – WD od 7 mm do 25 mm (zmiana co 2 mm)

Przygotowanie próbek do badań

Ponieważ informacja pochodzi z głębokości ~50 nm, dlatego konieczna jest:

- Ciągłość struktury krystalograficznej aż do powierzchni próbki
- Gładka powierzchnia bez wypukłości ("shadowing")
- Brak warstwy zdeformowanej, tlenkowej, napylonej

Trawienie termiczne *Y-TZP (0.2 - 0.3 μm)/WC* Polerowanie koloidalną krzemionką Y-TZP (0.2 - 0.3 μm)/WC

Granice międzyziarnowe w mosiądzu Mapa orientacji

Granice CSL (Coincidence Site Lattice) w mosiądzu Σ3 (granice bliźniacze) – 67%

Prof. J.Humphries, UM

Analiza tekstury

Stop AA5182 walcowany na gorąco

Prof. J.Humphries, UM

Fe0.05wt%C 725°C 554h

Dodatkowy detektor elektronów rozproszonych do przodu (foreward scattered electrons) do obrazowania miejsc na próbce, z których rejestrowane są dyfrakcje

Mapa zmian orientacji All Euler Map

Fe0.05wt%C 725°C 554h

Mapa IPF (*Inverse Pole Figure Map*) Kodowanie kolorów wskazuje kierunek kryształu równoległy do kierunku referencyjnego

Fe0.05wt%C 725°C 554h

Mapa BC (Band Contrast)Mapa TC (Texture Component Map)Idealna orientacja ziarna 1:
 $\phi_1=130.6^\circ$, $\Phi=40.1^\circ$, $\phi_2=67.0^\circ$,
odchylenie od idealnej orientacji 1°

Mapa orientacji

Mapa fazowa

Mapa orientacji + granice fazowe

EBSD/OIM – technika wymagająca wzorców

Solutions:				
Phase	MAD	Bands		
Aluminium	0.0521	6		
Al As2 Cs3	1.9693	6		
Al As2 Cs3	1.9697	6		
Al As2 Cs3	1.9829	6		

SZMERGIEL (skała zawierająca m.in. korund i magnetyt) Mapa BC (*Band Contrast*) Mapa fazowa

Mapa BC (Band Contrast)

Mapa fazowa

	Total	Partition
Phase	Fraction	Fraction
Chalcopyrite	0.395	0.445
Cubanite	0.330	0.372
Amphibole	0.010	0.011
Iron Oxide	0.115	0.130
Iron Sulfide	0.039	0.044

Forescatter electron image

General microstructure of the analyzed area.

Three prominent inclusions in dark grey, two of which shows the coesite-quartz transformation (radial fractures visible as dark lines).

Grey scale variations in the surrounding garnet represent differences in crystal orientations ("chanelling contrast")

Koezyt – odmiana wysokociśnieniowa (20-80 kbar) SiO₂ o strukturze jednoskośnej C2/c Kwarc – odmiana niskociśnieniowa SiO₂ o strukturze trygonalnej P3₂22 Granat - (Mg,Fe)₃Al₂[SiO₄]₃

EBSD quality map

General microstructure of the analyzed area

Two of the inclusions (in the centre and lower left part of the image) are prominent with radiating fractures, visible as black lines (poor EBSD quality)

Horizontal join of the 2 maps is visible across the centre of the image. Scale bar = $400 \mu m$

Phase map

Distribution of three phases across the area Garnet is marked in green, quartz in blue and coesite in red. The central inclusion has a core of coesite surrounded by a rim of quartz. The lower-left inclusion has completely reverted to quartz. Radiating from the prominent inclusions are fractures, visible as black lines (poor EBSD quality)

Orientation map

Crystallographic orientations of all three minerals Colors corresponding to the Euler angles. Grain boundaries are marked in black, phase boundaries are marked in red The whole area is comprised of only a few garnet grains. The quartz in the inclusions is polycrystalline with grain boundaries radiating from the centre. The coesite in the central inclusion is a single crystal

Deformation map

Deformation of the garnet around the coesite/quartz inclusions The attempted change from coesite to quartz has tried to expand the inclusion, thereby causing radial cracks and deformation in the garnet. This means that the garnet crystal has acted as a protective pressure vessel so that pieces of coesite have been preserved. Small scale of deformation in the large garnet grain (less than 2°) The EBSD technique is limited in spatial resolution by the electron-solid state interaction volume.

The best achievable spatial resolution on a material of <u>medium atomic</u> <u>number is currently in the order of</u> about 30 nm!!!

Towards better spatial resolution (below 1 µm)

D. Steinmetz, S. Zaefferer (2010),

Mat. Sci. Tech. 26, 640 - 645

F.J.Humphreys and I.Brough (1999), Journal of Microscopy

 X_r spatial resolution parallel to the sample tilt axis

 $\mathbf{Y}_{\mathbf{p}}$ spatial resolution perpendicular to the sample tilt axis
Physical spatial resolution
is determined by the size of the volume which contributes to the diffraction signal.
It depends on:

accelerating voltage
probe current

Higher spatial resolution means: lover kV & beam current The challenge for improving physical spatial resolution is EBSD operated at low kV !!!

- because:
- Low signal
- Weaker patterns especially the edges
- Broaden bands

Influence of accelerating voltage on exposure time

D. Steinmetz, S. Zaefferer (2010) Mat. Sci. Tech. 26, 640 – 645

Probe Current vs Physical Spatial Resolution

Spatial resolution is improved by using lower probe currents, but must have ability to obtain good Kikuchi patterns.

F.J.Humphreys and I.Brough, Journal of Microscopy, 195, (1999) 170-185

Physical spatial resolution as a function of voltage and probe current for aluminum

Courtesy of Harvinder Singh Ubhi, Oxford Instruments

Spatial resolution as a function of voltage and probe current for copper

Courtesy of Harvinder Singh Ubhi, Oxford Instruments

Influence of atomic number on physical spatial resolution

0.9 AI (Z = 13)Physical spatial resolution [µm] Cu(Z = 29)8,0 Aq (Z = 47)0,7 0,6 -0,5 0,4 0,3 0,2 · 0,1 -0 15 25 35 45 5 Beam energy [keV]

Pt, recrystallized

D. Dingley, in "Electron Backscatter Diffraction in Material Science", Kluver, 2000

T.Petersen, G.Heilberg, J.Hjelen (1998) ICEM 14 Proceedings, 775-776

100 nm step size

Nickel

~

TD

↓ RD

Gray Scale Map Type:<none>

Color Coded Map Type: Inverse Pole Figure [001] Nickel

Boundaries: <none>

20 keV

10 keV

Significant improvement of physical spatial resolution of EBSD is possible !!!

At 15 keV only 2 pixels and a slight decrease of pattern quality indicate of the presence of a small twin in a lightly deformed TWIP steel sample

At 7.5 keV the twin is clearly visible!

15keV

10 nm step size

S. Zaefferer (2011), Crystal Research and Technology 46, 6,607 - 628

Iron pyrite at 5 keV

Iron pyrite at 20 keV

At 20keV excellent detail can be seen within the pattern.

At 5keV, the patterns remain clear and are readily indexed.

Courtesy of Harvinder Singh Ubhi, Oxford Instruments

15 keV

10 keV

EBSD from Al₂O₃

7.5 keV

EBSD from Al₂O₃ 5 keV !!!

Long exposure time: 6 fps, binning 1x1

EBSD from Al₂O₃ 5 keV !!!

RHEED pattern is visible !!!

Reflection High Energy Electron Diffraction RHEED:

- provides large elastic scattering cross-section for forward scattered electrons
- keeps penetration depth small by using grazing incidence

Orientation maps from Al₂O₃ 5 keV

Orientation maps from Al₂O₃ 5 keV

IQ + HAGB

IPF + HAGB

Effective spatial resolution is given by the <u>smallest</u> structure that can be discerned by the EBSD system. It depends on: • the misorientation between two points • software algorithms used for pattern indexing and pattern deconcolution

Effective spatial resolution: the ability to deconvolute overlapping patterns at crystallite boundaries

Distance

Can be measured by traversing the beam across a boundary normal to the sample surface

EBSD from Al₂O₃ acquired in the Variable Pressure SEM Non-indexed points are in a narrow region at the grain boundary, where there are overlapping patterns

Calculation of Effective Spatial Resolution

70,53

F.J.Humphreys and I.Brough, Journal of Microscopy, 1999

Effective Spatial Resolution calculated for Al as a function of accelerating voltage and beam current

Courtesy of Harvinder Singh Ubhi, Oxford Instruments

Effective spatial resolution degradates with increased binning

As binning increases, the bands become less well defined, the pattern quality is reduced and the **effective spatial resolution**, which depends on **the ability to deconvolute overlapping patterns at boundaries**, deteriorates.

Binning 6x6

Binning 4x4

Binning 2x2

Binning 1x1

I.Brough, F.J.Humphreys (2010), Mat. Sci. Tech, 26 366-639 The step size selected for a particular EBSD measurement is NO INDICATOR of spatial resolution!!!

If step size is smaller that the physical or effective resolution then it depends <u>only</u> on the ability of the software system to deconvolute the overlapping patterns of neighbouring volumes.

Scanning mode versus spatial resolution

Square grid

 SEMMagr 100hz
 SQuri

Hexagonal grid

t – EBSD or TKD

(transmission electron backscatter diffraction) (Kikuchi Diffration Pattern in the SEM)

- t-EBSD/TKD uses a conventional EBSD system, including mounting, hardware and software
- FEG-SEM platform is an important component for the highest resolution work
- The difference (and innovation) between EBSD and t-EBSD/TKD is the placement and orientation of the sample in the SEM chamber
- Requires a thin sample !!!

SEM-TKD holder – a microclamp

Experimental set up for SEM-TKD, with the pre-tilted EBSD sample holder, the TEM foils held in a microclamp in a horizontal position, and the EBSD detector to the right.

P.Trimby, (2012), Ultramicroscopy 120 (2012) 16-24

FSE from Al after severe plastic deformation

BF-TEM image gold islands

STEM-FSE image gold islands

Sample courtesy S. Prikhodko (UCLA), TEM work by Roy Boulder (NIST)

STEM-FSD image with IPF map

Courtesy of Scott D.Sitzmann, Oxford Instruments

Courtesy of Scott D.Sitzmann Oxford Instruments

Each pixel = 2nm

100 nm

~10 X 15nm twin domain

Highly deformed Al 6060 alloy

Band contrast map

FSE image

IPF orientation map

=2 µm; GB+IPF_Z0+BC; Step=0.034 µm; Grid256x256

EBSP quality vs thickness for Al thin foil

Too thick: Lateral beam spread may produce **overlapped patterns**, depending on grain size, Z, kV

Optimal range

Secondary electron (SE) image of the central perforation in an **Al 6060** TEM foil. The yellow line marks a transect along which diffraction patterns were stored and analyzed.

20µm

Too thin (weak signal but still workable)

A comparison between STEM imaging in the SEM and TKD orientation mapping in aluminium alloy <u>Al6060</u>.

(a) A BF STEM image collected in the SEM.

(b) TKD pattern quality map(band contrast) of the same area,collected using a 10 nm step size.

(c) Cleaned orientation map (IPF z-direction coloring scheme), showing high angle boundaries $(>10^\circ)$ in black, and low angle boundaries $(2-10^\circ)$ in yellow.

P.Trimby, (2012), Ultramicroscopy 120 (2012) 16-24

Electrodeposited nano-Ni

100 nm

(Step: 2 nm)

18nm

Since TKD generally uses very small step sizes with high electron current, it is especially vulnerable to drift !!!

Drift

Best results at highest resolution after letting stage stabilize for 1-3 hours Vertical drift: image out of focus Good depth of field beneficial Contamination Clean samples and good vacuum necessary Scanning adjacent to region of interest for 10-60 minutes can help Sensible choice of map shape (short rows) Lab instabilities Air conditioning and coolant temperature In situ EBSD experiments

In situ experiments in the SEM

Gatan 950 °C Murano 525 heating stage with UBS Temperature Controller in the microscope chamber

Specimen plate

Main window of temperature control software

In situ experiments in the SEM

Gatan 950 °C Murano 525 heating stage

Heating stage parameters

- First heating stage for rapid *in-situ* specimen characterization
- Monitor phase transformation from ambient to 950 °C
- Single specimen for <u>entire</u> heating range, provides continuity and optimizes speed of characterization
- Controlled specimen heating to >100 °C per minute for 9 mm (L) x 4 mm (W) x 1.5 mm (H) samples

Gatan 950 °C Murano 525 heating stage

Magnetic field induced strain

Requirements: high magnetocrystalline anisotropy, highly mobile twin boundaries

Shape-memory effect

Magnetic shape-memory effect (Magnetic Field Induced Strain)

MFIS is based on the easy twin boundary motion and a high magnetocrystalline anisotropy in the martensitic state. Due to the tetragonal NM (non-modulated) or 7M or 5M (modulated) monoclinic structures, a macroscopic strain occurs by twin boundary motion exchanging the a- and caxes.

System Ni-Mn-Ga

$Ni_{50}Mn_{30}Ga_{20} \text{ non-modulated structure}$ $(A_{s} \sim 80^{\circ}C, A_{f} \sim 90^{\circ}C)$

90°C

IPF color coding, step size 0.15 μm

Phase map shows only one phase – i.e. complete transformation has occurred

Orientation relationship

Ni₅₀Mn₂₉Ga₂₁ modulated 5M structure $(A_s \approx 74^{\circ}C, A_f \approx 81^{\circ}C)$ Thermal cycling! $25^{\circ}C$ $90^{\circ}C$ $25^{\circ}C$

IPF color coding, step size 0.4 μm

Reverse transition

Distribution of martensitic laths (plates) after cooling is not the same as before phase transformation

Aluminum alloy 6013 after cold rolling Calorimetric studies

Temperature ^oC

Recrystallization peaks:

- 1 first recrystallization takes place in highly deformed zones in the vicinity of large particles (particle stimulated nucleation PSD)
- 2 proper recrystallization is overlapped by dissolution of small (<<1μm) second-phase particles.

Recrystallization is fully completed after reaching 380°C.

Aluminum alloy 6013 SEM 25°C

ND

RD

Aluminum alloy 6013 SEM 270°C

RD

Aluminum alloy 6013 SEM 310°C

ND

Aluminum alloy 6013 SEM 350°C & 410°C

ND

In-situ phase transformation $\alpha \rightarrow \beta$ in Titanium

- ✤ <u>Specimen</u>: 5 mm x 5 mm x 1 mm pure electropolished Ti.
- ✤ At 100 °C Ti exists in the HCP phase .
- Close to 880°C, Ti undergoes an allotropic transformation to BCC.
- Upon cooling, Ti structure gradually reverts back to HCP (equiaxed / Widmanstatten structure).
- Yellow marker shows minimal drift at elevated temperatures

Data: Dr. Ali Gholinia (Univ. of Manchester)

In-situ phase transformation $\gamma \rightarrow \alpha$ in low carbon steel

- Specimen: 5 mm x 5 mm x 1 mm electropolished steel.
- Heating to 945 °C : transformation to austenite.
- Controlled cooling to 880 °C: transformation to ferrite
- Microstructure and mechanical properties \rightarrow grain size.
- Murano allows steel heat treatment cycles to be optimised in real time, in-situ.

Data: Dr. S. Ubhi (Oxford Instruments)

EBSD - Analiza przemian fazowych

Kobalt β: faza wysokotemperaturowa sieć FCC

Temperatura przemiany alotropowej 417°C

Kobalt α sieć HCP

Równoległość osi [0001] i [111] faz α i β dla Co

3D-EBSD - Geometrical setup

microscope chamber

When a pre-tilted holder is used, the sample rotation around tilt axis by 180° is only needed.

pre-tilted sample holder

Ion milling

Data processing

Results: 3D reconstructions

T1600

S1600

T1650

S1650

2D &3D EBSD results from ZrO₂

2D Inverse Pole Figure map

101

001

3D pore structure reconstruction

3D pores distribution in ZrO₂

Other applications: Ni-Mo/Fe

3D IPF map

FeMoNiChemical composition evaluation by EDS

3D grain reconstruction

Other applications: Al6013

3D grain reconstruction

Grain boundary reconstruction (colors are randomly chosen)

3D EDS Al6013

EDS maps of elements distribution

3D-EBSD technique – pros and cons

Applications:

• 3D microstructure and microtexture of metals and ceramics

<u>Limitations:</u>

- ➤ destructive technique!
- >effects of anisotropic sputtering
- >effects of amorphisation
- microstructure analysis with > sample charging (in ceramics!) the grain size of ca. 1-5 μm > resolution: 50x50x50 nm³
- analysis of grain boundary character
- investigations of pore morphology

≻ region of interest:25x25x25 µm³
≻ time per slice: 5-30 min