
Characterization of material

structure by the X-ray diffraction 

II

X-ray diffraction phenomenon. 

Part I 



geometrical

Diffraction theories of X-ray on condensed matter

describes only directions, in which the 
diffracted rays are observed (no intensity 
predictions)

Various extent of generality

kinematical

dynamical
Describes diffraction on materials with
enough large areas of coherent scattering
with L dimmension ( mL > 0.01)

describes (among others) intensity of
radiation and is correct in the case of defected
and relatively fine-grained materials to fulfil
relation: I(scattered) << I(diffracted). No extinction
is regarded



Christian HUYGENS
(1629-1695), 
1678: outline of light theory

HUYGENS explained 
mechanizm of waves 
propagation

FRESNEL
1818: perturbation in any point 
is a result of interference of 
elementary waves regarding its 
amplitude and phase



Thomas YOUNG (1773-1829),

1802 carried out and explained the interference phenomena
Estimated wavelength.
Other interests: elasticity of solid bodies (E modulus)
- for steel E = 2.0 x 100 000 MPa (obecnie ≈ 210 Gpa)
- for bronze E = 1.0 x 100 000 MPa
- for glass E = 0.6 x 100 000 MPa



Interference





Objec of scattering (size) Radiation (typical wavelength)

Print-paint dot in newspaper (0.1 mm) Thermal radiation (0.1 nm, typical)

Rain drops (10 mm) Visible light (520 nm, green) (prism effect!)

Row of the parked autos (3 m) Audible sound wave (1.26 m at 20°C)

Lattice-plane distance (0.5 nm) X-ray (0.154 nm, CuKa)

Singular atoms in crystal (0.1 nm) Electron beam (3.7 pm for 100 keV)

Obstacle size  scatterind  diffraction



Scattered coherent waves:

Interference constructive           Interference destructive

Diffraction =  scattering + interference

Mathematical formulae: von Laue* (1912)

Max von LAUE (1879–1960), physiker,

prof. univ. Zurich and Berlin,

Discoverer of X-ray diffraction, Nobel

Prize, 1914



A basic diffraction equation of X-rays: Bragg equation

• in Anglo-Sakson literature → Bragg (Braggs) equation
• in Russian literature → Bragg-Wulf or Wulf-Bragg equation

What was the truth?
William Henry BRAGG (1862–1942), physicist and crystallographist, prof.
Univ. of London, member and chairman of the Royal Society, Nobel Prize
1915 (along with son W.L. Bragg) for study of crystals structure.

William Lawrance BRAGG (1890–1971), physicist and crystallographist, prof.
Univ. of Cambridge, member of the Royal Society, Nobel Prize 1915 (along
with son W.H. Bragg) for study of crystals structure.

Gieorgij W. Wulf (1863–1925), crystallographist, prof. Univ. of Kazań,
Warsaw (1899–1906) and Moscow (since 1918), member of the Science
Academy of USSR. Study in Warsaw, Munich and Paris. In 1913 returned to
Moscow and begun dissemination of Laue’s discovery.



…by Bragg:
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Adnotation at the end of the work of G.W. Wulf (sent from Russia) from 1913: „Eingegangen 3

Februar 1913”

where  = dhkl,  = cosy (y – angle between incident beam and normal to

diffracting lattice plane), m – order of reflection)

Bhkldn  sin2

Gieorgij W. Wulf – two his works from beginning 1913 in Russian [Fizika, 1913,

zesz. 1, s. 10 and Priroda, 1913, s. 27] concerned to interference of X-rays and its

behaviour in passing through the crystals. He known the earlier works of W.L.

Bragg from 1912r.

[Proceedings of the Royal Society, 1913, 88, 428]

„Ueber die Kristallroentgenogramme”
[Physikalishe Zeitschtrift, 1913, z. 6, s. 217]….by Wulf:

Adnotation at the end of the work of H.W & W.L. Braggs from 1913: „Received April 7, 1913”

y cos2 hkldm 
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Bhkldn  sin2

Base law (equation) of diffraction theory:

y cos2 hkldm 

Bragg law (equation)

Braggs – Wulf law (equation)

Wulf – Braggs law (equation)

Wulf law (equation)

Braggs law (equation)



„SURFACE ENGINEERING FOR CORROSION AND WEAR RESISTANCE” Editet by J.R. Davis, Davis & Associates, 2001.

„INŻYNIERIA WARSTWY WIERZCHNIEJ” Piotr Kula, Wydawnictwo Politechniki Łódzkiej, 2000.

Analysis of crystal structure by diffraction techniques

The crystal structure can be analyzed by X-ray diffraction (XRD from x-ray

diffraction) and electron diffraction.

Max von Laue (1879-1960),

Wiliam Henry Bragg (1862 - 1942) and Wiliam Lawrence Bragg (1890 - 1971) Max 

von Laue (1879 – 1960),

Diffraction - when an X-ray beam with a wavelength comparable to that between atoms

falls on a material, the X-ray beams are scattered in all directions. Most of the radiation

scattered by one atom is extinguished by radiation scattered by other atoms. However,

when radiation falls on certain crystallographic planes at specific angles, it is amplified

and not weakened.



Donald R. Askeland, Pradeep P. Phulé „The

science and engineering of materials”,

Thomson 2006.

Weakening (a) and strengthening (b) of

the interaction between X-rays and

crystalline material.

The amplification shall be provided at a

raading angle θ corresponding to

Bragg's equation → sin θ=λ/2dhkl

Analysis of crystal structure 

by diffraction techniques



Donald R. Askeland, Pradeep P. Phulé „The science and engineering of materials”, Thomson 2006.

The amplification shall be provided at an angle of incidence θ corresponding to 

Bragg's equation → sin θ=nλ/2dhkl

Analysis of crystal structure by diffraction techniques



Donald R. Askeland, Pradeep P. Phulé „The science and engineering of materials”, Thomson 2006.

Analysis of crystal structure by diffraction techniques

In the practical description of the interaction of radiation with the crystal, its

structure is treated as a periodic system of atomic planes behaving as

mirrors. Reinforcement shall be provided at an incidence angle θ

corresponding to Bragg's equation → sin θ=nλ/2dhkl

where: n is the total number (designating the row of scattering), λ - the

wavelength of the radiation (for particle streams, the wavelength shall be

determined from de Broglie: λ=h/p where: h - Planck constant and p -

particle momentum), d - distance between atomic planes in the crystal, θ -

angle between the beam of incident radiation and the plane of reflection of

the beam (angle of deflection at which the maximum intensity of deflected

radiation is observed).



Powder sample

Analysis of crystal structure by diffraction techniques

In the powder sample always some

part of the powder particles

(microcrystals) have so oriented

certain planes (hkl), they meet the

Bragg condition.



Donald R. Askeland, Pradeep P. Phulé „The science and engineering of materials”, Thomson 2006.

Analysis of crystal structure by diffraction techniques

a) Scheme of diffractometer,

b) Diffractogram obtained from a 

gold powder sample. 

If we know the wavelength of X-rays 

(λ), we can determine the distances 

between the planes (and identify the 

reflective crystallographic planes). 



„SURFACE ENGINEERING FOR CORROSION AND WEAR RESISTANCE” Editet by J.R. Davis, Davis & Associates, 2001.
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Listing of diffractograms recorded after removal of subsequent surface zones of the

4H13 steel nitrate sulphate layer → structural layer analysis.



Distance between crystallographic planes {hkl}:

Cubic primitive cell : h2+k2+l2= 1, 2, 3, 4, 5, 6, 8, ….

Cubic body centred cell : h2+k2+l2= 2, 4, 6, 8, 10, 12, 14, 16, ….

Cubic face centred cell : h2+k2+l2= 3, 4, 8, 11, 12, 16, ….
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J-P. Morniroli: Large-angle convergent -beam diffraction (LACBED), 2002 Société Française des Microscopies, Paris. 

a) A diffracted beam is produced if a hkl node of the reciprocal lattice is located exactly

on the Ewald sphere. This situation occurs for the node Phkl.

b) Relationship between a set of (hkl) lattice planes and its corresponding reciprocal

lattice vector ghkl. This vector is perpendicular to the (hkl) lattice planes and its

modulus ghkl is equal to 1/dhkl.

c) Vector description of Bragg’s law. Bragg’s law is satisfied when the scattering vector

S is equal to the reciprocal lattice vector ghkl.

Ewald sphere construction. General Case.



The principle of Laue Equation

Reciprocal space

All the reciprocal lattice points can be described by a linear combination of multiples of 

three basis vectors: . Its definition is equivalent to the following relations:

An interesting property of the reciprocal lattice vector is that the relations are still valid if 

we replace lattice vectors by reciprocal lattice vectors and inversely reciprocal lattice 

vectors by lattice vectors. If V* is the volume of the reciprocal unit cell, the reader can 

show that the expression VV* = 1 is also valid.



Now a reciprocal lattice vector h⃗ can be define by a linear combination of integer 

multiples of the three reciprocal lattice vectors:

The reciprocal vectors play an important role in diffraction. 

Miller indices

By construction, every reciprocal lattice vector is normal to a series of lattice planes.

We know also that the faces of a crystal are parallel to lattice planes and therefore

normal to the reciprocal vectors. We can therefore uniquely characterise each face

of a crystal by the integer components of a reciprocal vector with one important

subtlety. A face normal to vector h⃗ cannot be distinguished from a normal to

vector nh⃗. Therefore, we shall characterise each face of a crystal by three integer

components but without any common denominator. The triplet (h,k,l) satisfying this

condition is called the Miller indices of the face. With this specification, we realise

that Miller indices are only a subset of the possible reciprocal lattice vectors.



Miller indicators

The plane intersects the axes of the crystal at certain points, cutting off segments of a

certain length. The ratio of the net constant to the length of these sections, multiplied

by the constant, gives Miller indicators of this plane. The constant must be chosen so

that the indicators are as low as possible in absolute terms. Where the plane is

parallel to either axis, the intersection is infinite, giving a Miller Index of 0.



An abstraction of a crystalline structure where only the nodes of the lattice are given.

We have also reported a series of lattice planes with distances di and the

corresponding normal hi→ to the series of planes.

An important relation

between the distances d and

the reciprocal lattice

vector h⃗ normal to the

series of equidistant planes :
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Laue Equations



Laue Equations



Scattering on many atomic layers in crystalline materials

















Scattering on many atom layers in crystalline materials

a(cosa – cosa0) = H

Condition of X-ray diffraction on a lattice axis:
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b(cosb – cosb0) = K
c(cosg – cosg0) = L

LAUE’s equations

(condition of X-ray diffraction on a 

space lattice of crystal)

DS = a(cosa – cosa0) = H



Thank you


