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Introduction 

The Debye scattering formula (DSF) (Debye, 1915), which represents a total scattering approach, is 
gaining interest as a method often considered to be more effective than standard Retvield analyses, 
when it comes to the withdrawing the essential information regarding structural features of 
nanocrystalline materials from the corresponding powder diffraction patterns (Cervellino et al. 2010). 
Moreover it could be used to characterize the short range order in amorphous materials based on 
the model proposed by Czigany and Hultman (2010). Despite the fact that the relevance and 
importance of the DSF has been well known since it was published in 1915, it has not receive too 
much attention through most of that time. The main reason behind this phenomena should be 
directly addressed to the computational cost of the DSF. This is, as will be shown later, an important 
issue in the case of the calculations performed for the systems where the preferred orientation is 
taken into account, and based on the equation proposed by Hudson and Hofstader (1952) which can 
be treated as a special case of DSF. The rapid growth of the computational power of modern 
computers and the possibility of applying different numerical “tricks” however, facilitate and 
encourage the implementation and development of dedicated software programs.  

The majority of the analysis using DSF are based on the X-ray and neutron diffraction experimental 
data. Here, we will focus on the application of this equation(s) in the field of transmission electron 
microscopy. There are two main motivations for that. The first one is related with the smaller scale of 
observation in electron microscopy if compared to traditional XRD. The other one refers to the 
availability of TEM microscope. Whereas the latter can be found in many research centers, neutron 
or synchrotron X-ray sources are available only in dedicated facilities. In the first paper (part I) we 
concentrated on the analysis and interpretation of electron powder diffraction patterns (EPDP) 
obtained from SAED patterns of calcium carbonate precipitates formed during carbonation of 
calcium hydroxide solution. Here we will focus on the modeling of calcium carbonate clusters with 
different type of atom arrangements, calculation of corresponding electron diffraction patterns and 

their comparison with experimental data.  

 

Calculation of electron powder diffraction pattern (EPDP) 

In this paper we will consider two types of electron diffraction pattern calculations. The first one 
applies to the clusters randomly oriented in space and is based on the Debye scattering formula 
(Debye 1915): 
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    (Equation 1) 

where: 

I - intensity 

fi - scaterring amplitude of the i-th atom 

θ - scattering angle (2θ is the Bragg angle) 

λ - wavelength 

rij - separation vector of i-th and j-th atoms in a cluster 

The other one set of calculations applies to the clusters which show preferred orientation  and is 

based on the equation proposed by Hudson and Hofstadter (1952): 
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where:  

Sij - separation vector of i-th and j-th atom in a cluster along the direction of electron beam 

Dij - separation vector of i-th and j-th atom projected on the plane perpendicular to the 
electron beam direction 

J0 - Bessel function of zero order 

 

Note that the calculation of Bessel function (which is calculated for every of i-th and j-th atom in the 
cluster) significantly increases computational time. Apart from that there is a general problem of its 
numerical approximation. Here both approximation of Bessel function and numerical “trick” which 
speeds up the computation of Equation 2 are presented. First, lest us consider Bessel function of n-

order (n is an integer value) written as an integral expression: 
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Such an expression for numerical application can be approximated by the following summation: 
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where Δt = π/N (higher N results in smaller Δt giving better approximation of Equation 3). In 
computations performed here N = 200 appears to be sufficient.  Such an approximation is still 
numerically expensive. Therefore the following trick was applied. Instead of calculating Jn(x) for every 

i-th and j-th atom in the cluster at a θ value according to Equation 2 (where x = 2πDij

sin�2θ�
λ

 ) we can 

perform a set of subsequent operations: 

 

 



 

 

 

• Determine maximal value of Bessel function argument according to xmax = max(2πDij
sin�2θ�

λ
), 

xmin = 0 (see Equation 2).  Effectively xmax will be the combination of the cluster diameter  (if it 

has a spherical shape, or its maximal size otherwise) since this is the maximal value that Dij 

can have for any possible orientation, and maximal value of sin(2θ) within consider scattering 

angle range. 

• Declare an array A[] of M elements. Initialize this array according to the formula: A[m] =  

Jn(m*Δx)  using Equation 4, where Δx = (xmax -  xmin)/M, and m is the array index which varies 

from 0 to M-1. 

All presented steps are performed prior to the calculation of scattering pattern or patterns if more 

than one orientation is considered. From now on, every time when scattering intensity is calculated, 

instead of calculating Jn(x) (where x = 2πDij
sin�2θ�

λ
 ), Jn(x) is replaced by the array A[] value at index  m, 

where m = (round)(x / xmax) * (M - 1).  

Now we should consider how the position (x, y, z) of atom within the cluster volume which is 

changed when different orientations are considered. The orientation between two Cartesian 

coordinate systems can be described using Euler angles (φ1, ϕ, φ2) (Morawiec 2004). In order to 

transform one coordinate system into another it is necessary to perform a set of orientation 

transformations corresponding to each of the Euler angles according to the equation: 

(x’, y’, z’) = O(φ1, ϕ, φ2) (x, y, z)   (Equation 5) 

where: 

(x, y, z) – initial coordinate system 

(x’, y’, z’) – (x, y, z) after transformation 

O(φ1, ϕ, φ2) – transformation operator (set of orientations) 

 

There are a few different conventions regarding the sequence and the direction of the rotations. 

Here, one of the most popular was used, which involves the consecutive rotations around the z, x 

and z axis of the coordinate system subjected to rotation at an angle φ1, ϕ, φ2 respectively:  

O(φ1, ϕ, φ2) = O(z, φ2)O(x, ϕ)O(z, φ1)   (Equation 6) 

where 0 ≤ φ1 < 360°, 0 ≤ ϕ ≤ 180° and 0 ≤ φ2 < 360°. The angular range for each rotation allows to 

reach any possible orientation.  

It can be seen that the first rotation (i.e., O(z, φ1)) does not change Sij and Dij values (used in the 

equation 4.17) when the z-axis of the cluster is parallel to the electron beam. Therefore selection of 

the initial orientation of the cluster with its z-axis parallel to the electron beam limits the EPDP  

 

 



 

 

calculation to the two consecutive rotations around the x and z-axis of the cluster at angles ϕ and φ2 

respectively. Therefore the simulation of EPDP according to Equation 2 is performed for all 

orientation described by the equation: 

(x’, y’, z’) = O(z, β)O(x, α)(x, y, z)   (Equation 7) 

where: 

(x, y, z) – initial cluster coordinate system with its z-axis parallel to the electron beam 

(x’, y’, z’) – (x, y, z) after transformation 

O(x, α) – orientation around the cluster x-axis at α angle (0 ≤ α ≤ 180°) 

O(z, β) – orientation around the cluster z-axis at β angle (0 ≤ β < 360°) 

 

Results 

As shown in the previous paper, the estimated FWHM of the first EPDP peak corresponds to a cluster 
size ~10 Ǻ. Based on that, the shape of the clusters was assumed to be a sphere of 10 Ǻ in diameter. 
Four different arrangements of atoms within the cluster volume were considered. They correspond 
to vaterite, aragonite, calcite and monohydrocalcite. Two sets of simulations were performed, 
corresponding to the case of a randomly oriented clusters, as well as to the case where a possible 
preferred orientation develops. As we could see in the previous paper (part I), the initial amorphous 
structure was pseudomorphically replaced by highly oriented calcite, what could be explained by an 
oriented aggregation of pre-nucleation clusters which appearance preceded the formation of calcite 
with a well developed texture. Therefore, the equation, taking into account the development of a 
preferred cluster orientation is also tested (Equation 2) 

The results of the simulation for randomly oriented clusters (Equation 1) and their comparison with 
experimental results (i.e., electron powder diffraction patterns - EPDPs) are presented in Figure 1. 
Calculated EPDPs corresponding to clusters with vaterite, aragonite and calcite structure (Figure 1a,b 
and c) do not show a good matching with experimental EPDPs (Figure 1d). The positions of the first 
and second peak (at ~0.34 Å-1 and ~0.5 Å-1 respectively) of simulated EPDP for a cluster with 
monohydrocalcite structure (Figure 1d) match the positions of the two first peaks of experimental 

EPDPs (Figure 1e).  



 

 

Figure 1. Comparison between simulated EPDPs for clusters with ~10 

internal structures: vaterite (a), aragonite (b), calcite (c), monohydrocalcite (d)  and experimental 

EPDPs corresponding to ACC formed in lime water after 2 min air exposure (e) (back line: EPDP, red 
line: fitted function).   

 

In order to calculate different orientations of the cluster according to Equation 2, its lattice (which is 
non-Cartesian in each case) has to be associated with a Cartesian coordinate system. The applied 
relationship between lattice vectors (
the following: i) vaterite: a//x and 
monohydrocalcite: a//x and c//z

 

The procedure for EPDP simulation was the following. Initially the structure (i.e., vaterite, aragonite 
or calcite) was oriented with its z
oriented in space according to Equation 7, where

 

. Comparison between simulated EPDPs for clusters with ~10 Ǻ crystallite size and different 
internal structures: vaterite (a), aragonite (b), calcite (c), monohydrocalcite (d)  and experimental 
EPDPs corresponding to ACC formed in lime water after 2 min air exposure (e) (back line: EPDP, red 

In order to calculate different orientations of the cluster according to Equation 2, its lattice (which is 
Cartesian in each case) has to be associated with a Cartesian coordinate system. The applied 

relationship between lattice vectors (a, b, c) of the considered structure and Cartesian axes (
and c//z ii) aragonite a//x, b//y and c//z iii) calcite: 
z.  

The procedure for EPDP simulation was the following. Initially the structure (i.e., vaterite, aragonite 
or calcite) was oriented with its z-axis parallel to the electron beam. Subsequently, the structure was 
oriented in space according to Equation 7, where α and β were changed every 5°. Finally, the cluster 

 

crystallite size and different 
internal structures: vaterite (a), aragonite (b), calcite (c), monohydrocalcite (d)  and experimental 
EPDPs corresponding to ACC formed in lime water after 2 min air exposure (e) (back line: EPDP, red 

In order to calculate different orientations of the cluster according to Equation 2, its lattice (which is 
Cartesian in each case) has to be associated with a Cartesian coordinate system. The applied 

the considered structure and Cartesian axes (x, y, z) is 
iii) calcite: a//x and c//z iv) 

The procedure for EPDP simulation was the following. Initially the structure (i.e., vaterite, aragonite 
axis parallel to the electron beam. Subsequently, the structure was 

α and β were changed every 5°. Finally, the cluster  



 

 

shape (sphere with 10 Å in diameter) was “cut” from the oriented structure and the EPDP was 

simulated according to the equation 4.17. The theoretical (calculated) EPDPs were compared with 

experimental data (EPDPs obtained by the integration of SAED pattern-see part I) according to the 

equation: 
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where: 

R – matching coefficient between calculated (from Equation 2) and profile fitted to 
experimental EPDPs 

S – simulated EPDP intensity at ki (wavelength) point 

E – experimental EPDP intensity at ki point 

 

Figure 2 presents simulated EPDPs with the best matching to experimental EPDPs (i.e., with the 
smallest R value) for the considered types of internal structure. From all three considered types of 
internal structure of the cluster the best matching was obtained for clusters with calcite (Figure 2c) 

and monohydrocalcite (Figure 2d) structure. Their orientations correspond to ]124[ and ]011[ zone 

axis parallel to the electron beam direction for clusters with calcite and monohydrocalcite structure 
respectively. Both calculated EPDPs show peaks at very similar positions to experimental EPDPs. This 
second type of simulation shows that clusters may have a preferred orientation, because, the 
previous simulation showing non-oriented clusters never achieved such a good matching between 
simulated and experimental results. 
 



 

 

Figure 2. Simulated EPDPs for clusters (with spherical shape and 10 

structure of vaterite (a), aragonite (b), calcite (c) and 

cluster orientation, in comparison with experimental EPDPs of ACC formed in lime water after 2 min 

air exposure (e) (back line: EPDP, red line: fitted function).  

 

Conclusions 
 
Theoretical findings combined with
ACC with characteristics of monohydrocalcite and/or calcite. However, the reliability of simulated 
data may be questionable. It has to be taken into account that theoretical considerations a
on two assumptions: equal size distribution and lack of misorientation among aggregating clusters. 
The fact that ACC always transformed directly into calcite indicates that the observed short range
 
 
 

. Simulated EPDPs for clusters (with spherical shape and 10 Ǻ in diameter) with internal 
structure of vaterite (a), aragonite (b), calcite (c) and monohydrocalcite (d) displaying a preferred 
cluster orientation, in comparison with experimental EPDPs of ACC formed in lime water after 2 min 

air exposure (e) (back line: EPDP, red line: fitted function).   

Theoretical findings combined with experimental data point to the existence of short range order in 
ACC with characteristics of monohydrocalcite and/or calcite. However, the reliability of simulated 
data may be questionable. It has to be taken into account that theoretical considerations a
on two assumptions: equal size distribution and lack of misorientation among aggregating clusters. 
The fact that ACC always transformed directly into calcite indicates that the observed short range

 

Ǻ in diameter) with internal 
monohydrocalcite (d) displaying a preferred 

cluster orientation, in comparison with experimental EPDPs of ACC formed in lime water after 2 min 

experimental data point to the existence of short range order in 
ACC with characteristics of monohydrocalcite and/or calcite. However, the reliability of simulated 
data may be questionable. It has to be taken into account that theoretical considerations are based 
on two assumptions: equal size distribution and lack of misorientation among aggregating clusters. 
The fact that ACC always transformed directly into calcite indicates that the observed short range 



 

 

order may have an important role in crystalline phase selection. Its origin could be related to the 

formation of stable pre-nucleation clusters with a proto-calcite structure (short-range order) which 

forms ACC spheres, and transforms into calcite following an oriented aggregation (Gebauer et al. 

2010). Approach to the problem of characterization of amorphous and nanocrystalline phases 
presented here may be easy applied in case of different materials. In general, the arrangement of 
atoms within cluster volume of arbitrary shape, not necessary has to be derived from predefined 
crystal structure, but maybe initialize by Monte Carlo methods.  
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